[1] J. Nemcik, F. Krupa, S. Ozana, Z. Slanina, Wastewater treatment modeling methods review, IFAC PapersOnLine 55 (4) (2022) 195-200. [2] D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage. 186 (Pt 1) (2017) 24-41. [3] M. Stanga, Sanitation: Cleaning and Disinfection in the Food Industry, John Wiley & Sons (2010). [4] K.E. Adou, A.R. Kouakou, A.D. Ehouman, R.D. Tyagi, P. Drogui, K. Adouby, Coupling anaerobic digestion process and electrocoagulation using iron and aluminium electrodes for slaughterhouse wastewater treatment, Sci. Afr. 16 (2022) e01238. [5] M. Bayramoglu, M. Eyvaz, M. Kobya, Treatment of the textile wastewater by electrocoagulation economical evaluation, Chem. Eng. J. 128 (2-3) (2007) 155-161. [6] I. Linares-Hernandez, C. Barrera-Diaz, G. Roa-Morales, B. Bilyeu, F. Urena-Nunez, Influence of the anodic material on electrocoagulation performance, Chem. Eng. J. 148 (1) (2009) 97-105. [7] M. Aiyd Jasim, F.Y. AlJaberi, Investigation of oil content removal performance in real oily wastewater treatment by electrocoagulation technology: RSM design approach, Results Eng. 18 (2023) 101082. [8] F.Y. AlJaberi, New design of an electrocoagulation reactor to remove pollutants from groundwater: analysis and optimization using response surface methodology, S. Afr. N. J. Chem. Eng. 46 (2023) 205-216. [9] T. Harif, A. Adin, Characteristics of aggregates formed by electroflocculation of a colloidal suspension, Water Res. 41 (13) (2007) 2951-2961. [10] E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A.H. Mahvi, Heavy metals removal from aqueous environments by electrocoagulation process-a systematic review, J. Environ. Health Sci. Eng. 13 (2015) 74. [11] J.S. Do, M.L. Chen, Decolourization of dye-containing solutions by electrocoagulation, J. Appl. Electrochem. 24 (8) (1994) 785-790. [12] M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, Operating cost analysis of electrocoagulation of textile dye wastewater, Sep. Purif. Technol. 37 (2) (2004) 117-125. [13] A. Negash, D. Tibebe, M. Mulugeta, Y. Kassa, A study of basic and reactive dyes removal from synthetic and industrial wastewater by electrocoagulation process, S. Afr. N. J. Chem. Eng. 46 (2023) 122-131. [14] A.A. Hafiz, H.M. El-Din, A.M. Badawi, Chemical destabilization of oil-in-water emulsion by novel polymerized diethanolamines, J. Colloid Interface Sci. 284 (1) (2005) 167-175. [15] N. Gousmi, K. Bensadok, Study of the applicability of the electrocoagulation process for the treatment of petroleum waste, Third International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2016, October 30-31, Constantine, Algeria (2016). [16] N.M. Mostefa, M. Tir, Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions, Desalination 161 (2) (2004) 115-121. [17] O. Larue, E. Vorobiev, C. Vu, B. Durand, Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions, Sep. Purif. Technol. 31 (2) (2003) 177-192. [18] A.G. Alcala-Delgado, V. Lugo-Lugo, I. Linares-Hernandez, V. Martinez-Miranda, R.M. Fuentes-Rivas, F. Urena-Nunez, Industrial wastewater treated by galvanic, galvanic Fenton, and hydrogen peroxide systems, J. Water Process Eng. 22 (2018) 1-12. [19] M. Dolatabadi, T. Swiergosz, S. Ahmadzadeh, Electro-Fenton approach in oxidative degradation of dimethyl phthalate-the treatment of aqueous leachate from landfills, Sci. Total Environ. 772 (2021) 145323. [20] P. Canizares, F. Martinez, C. Jimenez, J. Lobato, M.A. Rodrigo, Coagulation and electrocoagulation of wastes polluted with dyes, Environ. Sci. Technol. 40 (20) (2006) 6418-6424. [21] E. Lacasa, P. Canizares, C. Saez, F.J. Fernandez, M.A. Rodrigo, Removal of nitrates from groundwater by electrocoagulation, Chem. Eng. J. 171 (3) (2011) 1012-1017. [22] Hu, S. Lo, W. Kuan, Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes, Water Res., 37(18) (2003) 4513-4523. [23] H.Z. Zhao, B. Zhao, W. Yang, T.H. Li, Effects of Ca2+ and Mg2+ on defluoridation in the electrocoagulation process, Environ. Sci. Technol. 44 (23) (2010) 9112-9116. [24] H.R. Tashauoei, M. Mahdavi, A. Fatehizadeh, E. Taheri, Comprehensive dataset on fluoride removal from aqueous solution by enhanced electrocoagulation process by persulfate salts, Data Brief 50 (2023) 109492. [25] N. Adhoum, L. Monser, N. Bellakhal, J.E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation, J. Hazard. Mater. 112 (3) (2004) 207-213. [26] P. Gao, X.M. Chen, F. Shen, G.H. Chen, Removal of chromium(VI) from wastewater by combined electrocoagulation-electroflotation without a filter, Sep. Purif. Technol. 43 (2) (2005) 117-123. [27] S. Irdemez, Y.S. Yildiz, V. Tosunoglu, Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes, Sep. Purif. Technol. 52 (2) (2006) 394-401. [28] W.H. Cao, M. Mehrvar, Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes, Chem. Eng. Res. Des. 89 (7) (2011) 1136-1143. [29] S. Bellebia, S. Kacha, Z. Bouberka, A.Z. Bouyakoub, Z. Derriche, Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes, Water Environ. Res. 81 (4) (2009) 382-393. [30] M.M. Emamjomeh, M. Sivakumar, Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, J. Environ. Manage. 90 (5) (2009) 1663-1679. [31] J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination 404 (2017) 1-21. [32] I. Heidmann, W. Calmano, Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation, J. Hazard Mater. 152 (3) (2008) 934-941. [33] I. Zongo, A.H. Maiga, J. Wethe, G. Valentin, J.P. Leclerc, G. Paternotte, F. Lapicque, Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance, J. Hazard. Mater. 169 (1-3) (2009) 70-76. [34] G. Roa-Morales, E. Campos-Medina, J. Aguilera-Cotero, B. Bilyeu, C. Barrera-Diaz, Aluminum electrocoagulation with peroxide applied to wastewater from pasta and cookie processing, Sep. Purif. Technol. 54 (1) (2007) 124-129. [35] M. Ugurlu, A. Gurses, C. Dogar, M. Yalcin, The removal of lignin and phenol from paper mill effluents by electrocoagulation, J. Environ. Manage. 87 (3) (2008) 420-428. [36] J.J. Santana, V.F. Mena, A. Betancor-Abreu, R. Rodriguez-Raposo, J. Izquierdo, R.M. Souto, Use of alumina sludge arising from an electrocoagulation process as functional mesoporous microcapsules for active corrosion protection of aluminum, Prog. Org. Coat. 151 (2021) 106044. [37] K. Govindan, M. Raja, S. Uma Maheshwari, M. Noel, Y. Oren, Comparison and understanding of fluoride removal mechanism in Ca2+, Mg2+ and Al3+ ion assisted electrocoagulation process using Fe and Al electrodes, J. Environ. Chem. Eng. 3 (3) (2015) 1784-1793. [38] F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry waste-water by electrocoagulation, J. Chem. Technol. Biotechnol. 86 (8) (2011) 1113-1120. [39] M. Ebba, P. Asaithambi, E. Alemayehu, Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology, Heliyon 8 (5) (2022) e09383. [40] M. Ebba, P. Asaithambi, E. Alemayehu, Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment, Appl. Water Sci. 11 (11) (2021) 175. [41] A. Arka, C. Dawit, A. Befekadu, S.K. Debela, P. Asaithambi, Wastewater treatment using sono-electrocoagulation process: optimization through response surface methodology, Sustain. Water Resour. Manag. 8 (3) (2022) 61. [42] P. Asaithambi, R. Govindarajan, Hybrid sono-electrocoagulation process for the treatment of landfill leachate wastewater: optimization through a central composite design approach, Environ. Process. 8 (2) (2021) 793-816. [43] P. Asaithambi, D. Beyene, A.R.A. Aziz, E. Alemayehu, Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM), Appl. Water Sci. 8 (2) (2018) 69. [44] Z. Al-Qodah, Y. Al-Qudah, W. Omar, On the performance of electrocoagulation-assisted biological treatment processes: a review on the state of the art, Environ. Sci. Pollut. Res. Int. 26 (28) (2019) 28689-28713. [45] P. Asaithambi, M.B. Yesuf, R. Govindarajan, P. Selvakumar, S. Niju, T. Pandiyarajan, A. Kadier, D.D. Nguyen, E. Alemayehu, Industrial wastewater treatment using batch recirculation electrocoagulation (BRE) process: studies on operating parameters, Sustain. Chem. Environ. 2 (2023) 100014. [46] H. Ehsani, N. Mehrdadi, G. Asadollahfardi, G.N. Bidhendi, G. Azarian, Continuous electrocoagulation process for pretreatment of high organic load moquette industry wastewater containing polyvinyl acetate: a pilot study, Int. J. Environ. Anal. Chem. 102 (10) (2022) 2260-2276. [47] P. Asaithambi, R. Govindarajan, M.B. Yesuf, P. Selvakumar, E. Alemayehu, Investigation of direct and alternating current-electrocoagulation process for the treatment of distillery industrial effluent: studies on operating parameters, J. Environ. Chem. Eng. 9 (2) (2021) 104811. [48] Y.O.A. Fouad, A.H. Konsowa, H.A. Farag, G.H. Sedahmed, Performance of an electrocoagulation cell with horizontally oriented electrodes in oil separation compared to a cell with vertical electrodes, Chem. Eng. J. 145 (3) (2009) 436-440. [49] M. Tiaiba, B. Merzouk, M. Mazour, Study of the applicability of the electrocoagulation process for the treatment of textile waste, Algerian. J. Environ. Sci. Technol, (2023)1-7. [50] M. Bennajah, reportTreatment of Liquid Industrial Waste by Electrocoagulation Electroflotation in an Airlift Reactor, Ph.D. Thesis, National Polytechnic Institute of Toulouse, (2007). [51] K.L. Dubrawski, C. Du, M. Mohseni, General potential-current model and validation for electrocoagulation, Electrochim. Acta 129 (2014) 187-195. [52] S. Zhao, G.H. Huang, G.H. Cheng, Y.F. Wang, H.Y. Fu, Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes, Desalination 344 (2014) 454-462. [53] A. Aitbara, S. Hazourli, S. Boumaza, S. Touahria, M. Cherifi, Comparative Study of the Efficiency of Pretreatment of Effluents from an Industrial Dairy by Coagulation-Flocculation and Dynamic Electrocoagulation, (2013). [54] P. Canizares, C. Jimenez, F. Martinez, M.A. Rodrigo, C. Saez, The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters, J. Hazard Mater. 163 (1) (2009) 158-164. [55] A. Azzouz, Concepte de modelare si elemente de strategie in designul industrial, Editura Tehnica-Info, Chisinau, (2001). [56] E. Assaad, A. Azzouz, D. Nistor, A.V. Ursu, T. Sajin, D.N. Miron, F. Monette, P. Niquette, R. Hausler, Metal removal through synergic coagulation-flocculation using an optimized chitosan-montmorillonite system, Appl. Clay Sci. 37 (3-4) (2007) 258-274. [57] A. Shokri, Degradation of 4-Chloro phenol in aqueous media thru UV/Persulfate method by Artificial neural network and full factorial design method, Int. J. Environ. Anal. Chem. 102 (17) (2022) 5077-5091. [58] A. Shokri, Using Mn based on lightweight expanded clay aggregate (LECA) as an original catalyst for the removal of NO2 pollutant in aqueous environment, Surf. Interfaces 21 (2020) 100705. [59] A. Shokri, Employing electro-peroxone process for degradation of Acid Red 88 in aqueous environment by Central Composite Design: a new kinetic study and energy consumption, Chemosphere 296 (2022) 133817. [60] A. Shokri, Investigation of UV/H2O2 process for removal of ortho-toluidine from industrial wastewater by response surface methodology based on the central composite design, Desalination Water Treat. 58 (2017) 258-266. [61] A. Shokri, B. Nasernejad, Treatment of spent caustic wastewater by electro-Fenton process: kinetics and cost analysis, Process. Saf. Environ. Prot. 172 (2023) 836-845. [62] A. Shokri, The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process, Desalin. Water Treat. 111 (2018) 173-182. |