[1] U. Wolwer-Rieck, W. Tomberg, A. Wawrzun, Investigations on the stability of stevioside and rebaudioside a in soft drinks, J. Agric. Food Chem. 58 (23) (2010) 12216-12220. [2] Y. Wang, X. Luo, L. Chen, A.T. Mustapha, X. Yu, C. Zhou, C.E. Okonkwo, Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review, Compr. Rev. Food Sci. Food Saf. 22 (1) (2023) 615-642. [3] N. Iatridis, A. Kougioumtzi, K. Vlataki, S. Papadaki, A. Magklara, Anti-cancer properties of Stevia rebaudiana; more than a sweetener, Molecules 27 (4) (2022) 1362. [4] GRN No. 252 Rebaudioside A purified from Stevia rebaudiana (Bertoni) Bertoni https://www.Cfsanappsexternal.Fda.Gov/scripts/fdcc/index.Cfm?Set=grasnotices&id=252. (Accessed May 2, 2024) [5] S.G. Lee, E. Salomon, O. Yu, J.M. Jez, Molecular basis for branched steviol glucoside biosynthesis, Proc. Natl. Acad. Sci. USA 116 (26) (2019) 13131-13136. [6] Y. Lin, M.M. Wen, Q. Lan, Y. Yin, R.B. Huang, H. Pang, H. Wei, L.Q. Du, A strategy to increase rebaudioside A content based on one-step bioconversion of Stevia extract to steviol, Green Chem. 25 (8) (2023) 3214-3222. [7] X.Y. Huang, J.F. Fu, D.L. Di, Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography, Sep. Purif. Technol. 71 (2) (2010) 220-224. [8] X.Y. Huang, M. Tian, D. Pei, J.F. Liu, D.L. Di, Development of overlapping repeated separation of steviol glycosides with counter current chromatography and a comparison with a conventional repeated separation method, J. Sep. Sci. 41 (15) (2018) 3163-3169. [9] B. Chen, R. Li, X.H. Chen, S. Yang, S.G. Li, K.D. Yang, G.L. Chen, X.X. Ma, Purification and preparation of rebaudioside A from steviol glycosides using one-dimensional hydrophilic interaction chromatography, J. Chromatogr. Sci. 54 (8) (2016) 1408-1414. [10] Y.F. Liu, D.L. Di, Q.Q. Bai, J.T. Li, Z.B. Chen, S. Lou, H.L. Ye, Preparative separation and purification of rebaudioside a from steviol glycosides using mixed-mode macroporous adsorption resins, J. Agric. Food Chem. 59 (17) (2011) 9629-9636. [11] J.C. Evans, J.J. Hahn, A.S. Myerson, T. Oolman, T.A. Rhonemus, K.M. Storo, C.A. Tyler, Method of producing purified rebaudioside a compositions using solvent/antisolvent crystallization, US Pat., 2010/0099857 A1 (2010). [12] D. Bursac Kovacevic, F.J. Barba, D. Granato, C.M. Galanakis, Z. Herceg, V. Dragovic-Uzelac, P. Putnik, Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves, Food Chem. 254 (2018) 150-157. [13] Y.X. Liu, X. Hua, M.L. Zhang, A.B. Zhou, X.Y. Zhou, R.J. Yang, Recovery of steviol glycosides from industrial stevia by-product via crystallization and reversed-phase chromatography, Food Chem. 344 (2021) 128726. [14] Q.W. Xu, K. Yuan, J.H. Gu, M.H. Zhu, H. Song, Recovery of rebaudioside A from mother liquor sugar in industrial steviol glycoside production by adding inorganic salts, Sustain. Chem. Pharm. 20 (2021) 100360. [15] L.L. Xu, J.H. Fu, C.B. Du, Q.Q. Xu, B.J. Liu, Z.B. Bao, Solubility of biocompounds 2, 5-furandicarboxylic acid and 5-formylfuran-2-carboxylic acid in binary solvent mixtures of water and 1, 4-dioxane, Processes 10 (12) (2022) 2480. [16] U. Wolwer-Rieck, The leaves of Stevia rebaudiana (bertoni), their constituents and the analyses thereof: A review, J. Agric. Food Chem. 60 (4) (2012) 886-895. [17] N.S. Kolate, H. Mishra, S.G. Kini, G. Raghavan, T.B. Vyas, A validated RP-HPLC method for quantification of steviol glycoside: Rebaudioside A in extracts of stevia rebaudiana leaf, Chromatographia 84 (1) (2021) 21-26. [18] A. Apelblat, E. Manzurola, Solubilities ofo-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, andp-toluic acid, and magnesium- DL-aspartate in water fromT=(278 to 348) K, J. Chem. Thermodyn. 31 (1) (1999) 85-91. [19] S. Yu, W.G. Xing, F.M. Xue, Y. Cheng, Y.Z. Liu, H. Chen, C. Hao, Y.Y. Sun, Measurement and correlation of solubility and thermodynamic properties of fluoxetine hydrochloride in 15 pure solvents and a methanol+water binary solvent system, J. Chem. Eng. Data 65 (9) (2020) 4656-4668. [20] A. Mehrdad, A.H. Miri, Influence of 1-butyl-3-methyl imidazolium bromide, ionic liquid as co-solvent on aqueous solubility of acetaminophen, J. Mol. Liq. 221 (2016) 1162-1167. [21] H. Renon, J.M. Prausnitz, Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures, Ind. Eng. Chem. Proc. Des. Dev. 8 (3) (1969) 413-419. [22] W.E. Acree, Comments concerning ‘Model for solubility estimation in mixed solvent systems’, Int. J. Pharm. 127 (1) (1996) 27-30. [23] A. Jouyban-Gharamaleki, J. Hanaee, A novel method for improvement of predictability of the CNIBS/R-K equation, Int. J. Pharm. 154 (2) (1997) 245-247. [24] A. Jouyban, E. Rahimpour, Z. Karimzadeh, A new correlative model to simulate the solubility of drugs in mono-solvent systems at various temperatures, J. Mol. Liq. 343 (2021) 117587. [25] A. Noubigh, A. Akrmi, Temperature dependent solubility of vanillic acid in aqueous methanol mixtures: Measurements and thermodynamic modeling, J. Mol. Liq. 220 (2016) 277-282. [26] A. Bondi, Van der waals volumes and radii, J. Phys. Chem. 68 (3) (1964) 441-451. [27] A. Jouyban, A. Shayanfar, W.E. Acree, Solubility prediction of polycyclic aromatic hydrocarbons in non-aqueous solvent mixtures, Fluid Phase Equilib. 293 (1) (2010) 47-58. [28] R.A. Granberg, A.C. Rasmuson, Solubility of paracetamol in pure solvents, J. Chem. Eng. Data 44 (6) (1999) 1391-1395. [29] J.B. Ouyang, J.K. Wang, Y.L. Wang, Q.X. Yin, H.X. Hao, Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride, Front. Chem. Sci. Eng. 9 (1) (2015) 94-104. [30] S.Y. Zong, J.K. Wang, Y. Xiao, H. Wu, Y.N. Zhou, Y.M. Guo, X. Huang, H.X. Hao, Solubility and dissolution thermodynamic properties of lansoprazole in pure solvents, J. Mol. Liq. 241 (2017) 399-406. [31] H. Buchowski, A. Ksiazczak, S. Pietrzyk, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, J. Phys. Chem. 84 (9) (1980) 975-979. [32] M. Upreti, J.P. Smit, E.J. Hagen, V.N. Smolenskaya, I. Prakash, Single crystal growth and structure determination of the natural “high potency” sweetener rebaudioside A, Cryst. Growth Des. 12 (2) (2012) 990-993. [33] B. Asadzadeh, J.L. Zhong, W.D. Yan, Solid-liquid equilibrium of rebaudioside A in pure and binary mixed solvents at T=(288.15 to 328.15) K, J. Chem. Eng. Data 63 (11) (2018) 4269-4276. [34] L. Celaya, E. Kolb, N. Kolb, Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures, Int. J. Food Stud. 5 (2) (2016) 158-166. [35] I. Prakash, G.E. Dubois, J.F. Clos, K.L. Wilkens, L.E. Fosdick, Development of rebiana, a natural, non-caloric sweetener, Food Chem. Toxicol. 46 (Suppl 7) (2008) S75-S82. [36] A. Su, B.C. Liang, H. Chen, Determination and correlation of the solubility of Rebaudioside A in different solvents, Appl. Chem. Ind. 42 (10) (2013) 1934-1937, 1940. [37] M.S. Cintron, G.P. Johnson, A.D. French, Quantum mechanics models of the methanol dimer: OH…O hydrogen bonds of β-d-glucose moieties from crystallographic data, Carbohydr. Res. 443 (2017) 87-94. [38] Z.D. Gao, Z.L. Li, M.Y. Li, Z.R. Wang, R. Zhou, B.H. Wang, Solubility measurement and thermodynamic model correlation of propyl gallate in pure and binary solvents from T=(293.15 to 333.15) K, J. Mol. Liq. 318 (2020) 114035. [39] Y.Q. Zhang, F. Guo, Q. Cui, M.Y. Lu, X.L. Song, H.J. Tang, Q.S. Li, Measurement and correlation of the solubility of vanillic acid in eight pure and water+ethanol mixed solvents at temperatures from (293.15 to 323.15) K, J. Chem. Eng. Data 61 (1) (2016) 420-429. [40] P.B. Lian, L.Z. Chen, D. He, G.Y. Zhang, Z.S. Xu, J.L. Wang, Crystallization thermodynamics of 2, 4(5)-dinitroimidazole in binary solvents, Chin. J. Chem. Eng. 57 (2023) 173-182. [41] C.J. Huang, G.B. Yao, Study on 2-amino-4-chloro-6-methoxypyrimidine in four binary solvent mixtures: Solubility measurement, calculation, preferential solvation and extended Hildebrand solubility parameter approach analysis, J. Mol. Liq. 389 (2023) 122788. [42] P.S. Zhang, R. Zhao, C. Zhang, Y.M. Wan, T. Li, B.Z. Ren, Thermodynamic analysis and correlation of cyromazine in three (acetic acid, propanoic acid or ethylene glycol + water) binary solvents at different temperatures, J. Mol. Liq. 272 (2018) 158-169. [43] M. Barzegar-Jalali, E. Rahimpour, F. Martinez, A. Jouyban, Solubility and thermodynamics of lamotrigine in carbitol + water mixtures from t = (293.2 to 313.2) K, Chem. Eng. Commun. 206(2) (2019) 182-192. |