[1] D. Griggs, M. Noguer, Climate change 2001:The Scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Weather, 57(8)(2002)267-269. [2] D.S. Gabbay, F. De Roos, J. Perrone, Twenty-foot fall averts fatality from massive hydrogen sulfide exposure, J. Emerg. Med. 20(2)(2001)141-144. [3] H.J. Son, J.H. Lee, H2S removal with an immobilized cell hybrid reactor, Process. Biochem. 40(6)(2005)2197-2203. [4] A.F. Perna, D. Lanza, I. Sepe, I. Raiola, R. Capasso, N.G. De Santo, D. Ingrosso, Hydrogen sulfide, a toxic gas with cardiovascular properties in uremia:How harmful is it?Blood Purif. 31(1-3)(2011)102-106. [5] A. Noyola, J.M. Morgan-Sagastume, J.E. Lopez-Hernandez, Treatment of biogas produced in anaerobic reactors for domestic wastewater:Odor control and energy/resource recovery, Rev. Environ. Sci. Bio/Technol. 5(1)(2006)93-114. [6] T.W. Lambert, V.M. Goodwin, D. Stefani, L. Strosher, Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective, Sci. Total Environ. 367(1)(2006)1-22. [7] M.S. Shah, M. Tsapatsis, J.I. Siepmann, Hydrogen sulfide capture:From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes, Chem. Rev. 117(14)(2017)9755-9803. [8] T.N.A. Tengku Hassan, A.M. Shariff, M.M. Mohd Pauzi, M.S. Khidzir, A. Surmi, Insights on cryogenic distillation technology for simultaneous CO2 and H2S removal for sour gas fields, Molecules 27(4)(2022)1424. [9] S. Basu, A.L. Khan, A. Cano-Odena, C.Q. Liu, I.F.J. Vankelecom, Membrane-based technologies for biogas separations, Chem. Soc. Rev. 39(2)(2010)750-768. [10] B. Burr, L. Lyddon, A comparison of physical solvents for acid gas removal, GPA Annu. Conv. Proc. 1(2008)100-113. [11] A.K. Saha, S.S. Bandyopadhyay, P. Saju, A.K. Biswas, Selective removal of hydrogen sulfide from gases containing hydrogen sulfide and carbon dioxide by absorption into aqueous solutions of 2-amino-2-methyl-1-propanol, Ind. Eng. Chem. Res. 32(12)(1993)3051-3055. [12] L. Sun, R. Smith, Rectisol wash process simulation and analysis, J. Clean. Prod. 39(2013)321-328. [13] F. Liang, B.G. Xu, X.H. Shi, S.R. Ming, Advances in desulfurization with wet oxidation process, Mod. Chem. Ind. 23(5)(2003)21-24, in Chinese. [14] M.M. Taib, T. Murugesan, Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa, Chem. Eng. J. 181-182(2012)56-62. [15] E. Sada, H. Kumazawa, M.A. Butt, D. Hayashi, Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous monoethanolamine solutions, Chem. Eng. Sci. 31(9)(1976)839-841. [16] J.T. Yeh, K.P. Resnik, K. Rygle, H.W. Pennline, Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia, Fuel Process. Technol. 86(14-15)(2005)1533-1546. [17] P.W.J. Derks, G.F. Versteeg, Kinetics of absorption of carbon dioxide in aqueous ammonia solutions, Energy Procedia 1(1)(2009)1139-1146. [18] I.R. Soosaiprakasam, A. Veawab, Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process, Int. J. Greenh. Gas Contr. 2(4)(2008)553-562. [19] S. Martin, H. Lepaumier, D. Picq, J. Kittel, T. de Bruin, A. Faraj, P.L. Carrette, New amines for CO2 capture. IV. Degradation, corrosion, and quantitative structure property relationship model, Ind. Eng. Chem. Res. 51(18)(2012)6283-6289. [20] E.S. Gil, S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci. 29(12)(2004)1173-1222. [21] J.M. Shively, R.S. English, S.H. Baker, G.C. Cannon, Carbon cycling:The prokaryotic contribution, Curr. Opin. Microbiol. 4(3)(2001)301-306. [22] D.B. Zhao, M. Wu, Y. Kou, E.Z. Min, Ionic liquids:Applications in catalysis, Catal. Today 74(1-2)(2002)157-189. [23] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun.(13)(1992)965. [24] L.A. Blanchard, H.C. Dan, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399(6731)(1999)28-29. [25] J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B 106(29)(2002)7315-7320. [26] K.A. Huang, D.N. Cai, Y.L. Chen, Y.T. Wu, X.B. Hu, Z.B. Zhang, Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption, AIChE J. 59(6)(2013)2227-2235. [27] K. Huang, X.M. Zhang, L.S. Zhou, D.J. Tao, J.P. Fan, Highly efficient and selective absorption of H2S in phenolic ionic liquids:A cooperative result of anionic strong basicity and cationic hydrogen-bond donation, Chem. Eng. Sci. 173(2017)253-263. [28] Y. Hu, X.S. Li, J. Liu, L.W. Li, L.Q. Zhang, Experimental investigation of CO2 absorption enthalpy in conventional imidazolium ionic liquids, Greenh. Gases 8(4)(2018)713-720. [29] C.Y. Ma, S.K. Shukla, R. Samikannu, J.P. Mikkola, X.Y. Ji, CO2 separation by a series of aqueous morpholinium-based ionic liquids with acetate anions, ACS Sustain. Chem. Eng. 8(1)(2020)415-426. [30] S. Kumar, M.K. Mondal, Equilibrium solubility of CO2 in aqueous blend of 2-(diethylamine) ethanol and 2-(2-aminoethylamine) ethanol, J. Chem. Eng. Data 63(5)(2018)1163-1169. [31] B.H. Zhu, Q.C. Liu, Q.A. Zhou, J.A. Yang, J.A. Ding, J.A. Wen, Absorption of carbon dioxide from flue gas using blended amine solutions, Chem. Eng. Technol. 37(4)(2014)635-642. [32] I.M. Saeed, P. Alaba, S. Ali Mazari, W.J. Basirun, V.S. Lee, N. Sabzoi, Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture, Int. J. Greenh. Gas Contr. 79(2018)212-233. [33] C. Nwaoha, C. Saiwan, T. Supap, R. Idem, P. Tontiwachwuthikul, W. Rongwong, M.J. Al-Marri, A. Benamor, Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA), Int. J. Greenh. Gas Contr. 53(2016)292-304. [34] M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. B 111(30)(2007)9001-9009. [35] Y. Teng, Y. Wang, H.B. Hu, C. Li, R. Zhang, H.N. Cheng, S.Q. Zheng, Density, viscosity, and hydrogen sulfide solubility of the triethylamine hydrochloride ferric chloride ionic liquid, J. Chem. Eng. Data 68(3)(2023)612-626. [36] C. Li, Y. Teng, H.N. Cheng, H.W. Jin, K.K. Li, Z. Feng, Z.H. Li, X.S. Tan, S.Q. Zheng, Density, viscosity, and H2S solubility of N-butylmorpholine bromide iron-based ionic liquids, J. Mol. Liq. 378(2023)121592. [37] M. Safavi, C. Ghotbi, V. Taghikhani, A.H. Jalili, A. Mehdizadeh, Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate:Experimental and modelling, J. Chem. Thermodyn. 65(2013)220-232. [38] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27(6)(1972)1197-1203. [39] A. Haghtalab, A. Kheiri, High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate, J. Chem. Thermodyn. 89(2015)41-50. [40] X.M. Zhang, W.J. Xiong, L.L. Peng, Y.T. Wu, X.B. Hu, Highly selective absorption separation of H2S and CO2 from CH4 by novel azole-based protic ionic liquids, AIChE. J. 66(6)(2020), e16936. [41] T. Lu, Molclus Program, Version 1.9.9.9, http://www.keinsci.com/research/molclus. html (accessed June 2, 2022). [42] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford CT,(2009). [43] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98(45)(1994)11623-11627. [44] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15)(2010)154104. [45] M.J. Frisch, J.A. Pople, J.S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, J. Chem. Phys. 80(7)(1984)3265-3269. [46] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120(1)(2008)215-241. [47] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn:Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7(18)(2005)3297-3305. [48] J.J. Zheng, X.F. Xu, D.G. Truhlar, Minimally augmented Karlsruhe basis sets, Theor. Chem. Acc. 128(3)(2011)295-305. [49] T.A. Lu, Q.X. Chen, Interaction region indicator:A simple real space function clearly revealing both chemical bonds and weak interactions, Chemistry-Methods 1(5)(2021)231-239. [50] T. Lu, F.W. Chen, Multiwfn:A multifunctional wavefunction analyzer, J. Comput. Chem. 33(5)(2012)580-592. [51] W. Humphrey, A. Dalke, K. Schulten, VMD:Visual molecular dynamics, J. Mol. Graph. 14(1)(1996)33-38. [52] R.F.W. Bader, ChemInform abstract:A quantum theory of molecular structure and its applications, ChemInform 23(3)(1992), https://doi.org/10.1002/chin.199203324. [53] P. Lipkowski, S.J. Grabowski, T.L. Robinson, J. Leszczynski, Properties of the C-H…H dihydrogen bond:An ab initio and topological analysis, J. Phys. Chem. A 108(49)(2004)10865-10872. [54] P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Predicting hydrogen-bond strengths from acid-base molecular properties. The pKa slide rule:Toward the solution of a long-lasting problem, Acc. Chem. Res. 42(1)(2009)33-44. [55] R. Taylor, O. Kennard, Crystallographic evidence for the existence of CH.cntdot.cntdot.cntdot.O, CH.cntdot.cntdot.cntdot.N and CH.cntdot.cntdot.cntdot.Cl hydrogen bonds, J. Am. Chem. Soc. 104(19)(2002)5063-5070. [56] E. Espinosa, I. Alkorta, J. Elguero, E. Molins, From weak to strong interactions:A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H…F-Y systems, J. Chem. Phys. 117(12)(2002)5529-5542. [57] D.B. Hibbert, Uncertainties in the measurement of solubility-A tutorial, J. Chem. Thermodyn. 133(2019)152-160. [58] A.H. Jalili, M. Shokouhi, G. Maurer, M. Hosseini-Jenab, Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate, J. Chem. Thermodyn. 67(2013)55-62. [59] H. Sakhaeinia, V. Taghikhani, A.H. Jalili, A. Mehdizadeh, A.A. Safekordi, Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions, Fluid Phase Equilib. 298(2)(2010)303-309. [60] X. Wang, S.J. Zeng, J.L. Wang, D.W. Shang, X.P. Zhang, J.D. Liu, Y.T. Zhang, Selective separation of hydrogen sulfide with pyridinium-based ionic liquids, Ind. Eng. Chem. Res. 57(4)(2018)1284-1292. [61] A.H. Jalili, M. Rahmati-Rostami, C. Ghotbi, M. Hosseini-Jenab, A.N. Ahmadi, Solubility of H2S in ionic liquids[bmim][PF6],[bmim][BF4], and[bmim][Tf2N], J. Chem. Eng. Data 54(6)(2009)1844-1849. [62] H. Sakhaeinia, A.H. Jalili, V. Taghikhani, A.A. Safekordi, Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylimide ([emim][Tf2N]), J. Chem. Eng. Data 55(12)(2010)5839-5845. [63] K.A. Huang, X.M. Zhang, X.B. Hu, Y.T. Wu, Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2, AIChE J. 62(12)(2016)4480-4490. [64] E.I. Alevizou, E.C. Voutsas, Evaluation of COSMO-RS model in binary and ternary mixtures of natural antioxidants, ionic liquids and organic solvents, Fluid Phase Equilib. 369(2014)55-67. [65] W.W. Tang, C. Xie, Z. Wang, S.G. Wu, Y. Feng, X.M. Wang, J.K. Wang, J.B. Gong, Solubility of androstenedione in lower alcohols, Fluid Phase Equilib. 363(2014)86-96. |