[1] C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev. 37 (3) (2008) 527-549. [2] T. Roy, S. Sahani, D. Madhu, Y. Chandra Sharma, A clean approach of biodiesel production from waste cooking oil by using single phase BaSnO3 as solid base catalyst: Mechanism, kinetics & E-study, J. Clean. Prod. 265 (2020) 121440. [3] D. Madhu, S.B. Chavan, V. Singh, B. Singh, Y.C. Sharma, An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst, Bioresour. Technol. 214 (2016) 210-217. [4] G. Dodekatos, S. Schunemann, H. Tuysuz, Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation, ACS Catal. 8 (7) (2018) 6301-6333. [5] H.W. Tan, A.R. Abdul Aziz, M.K. Aroua, Glycerol production and its applications as a raw material: A review, Renew. Sustain. Energy Rev. 27 (2013) 118-127. [6] J.S. Choi, F.S.H. Simanjuntak, J.Y. Oh, K.I. Lee, S.D. Lee, M. Cheong, H.S. Kim, H. Lee, Ionic-liquid-catalyzed decarboxylation of glycerol carbonate to glycidol, J. Catal. 297 (2013) 248-255. [7] C. Magniont, G. Escadeillas, C. Oms-Multon, P. De Caro, The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix, Cem. Concr. Res. 40 (7) (2010) 1072-1080. [8] M.O. Sonnati, S. Amigoni, E.P. Taffin de Givenchy, T. Darmanin, O. Choulet, F. Guittard, Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications, Green Chem. 15 (2) (2013) 283-306. [9] J.W. Yoo, Z. Mouloungui, A. Gaset, US Patent 6,316,641 B1 (2001). [10] G. Rokicki, P. Rakoczy, P. Parzuchowski, M. Sobiecki, Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: Glycerol carbonate, Green Chem. 7 (7) (2005) 529-539. [11] S. Claude, Z. Mouloungui, J.W. Yoo, A. Gaset, European Patent 0955298 (1996). [12] S. Sahani, S.N. Upadhyay, Y.C. Sharma, Critical review on production of glycerol carbonate from byproduct glycerol through transesterification, Ind. Eng. Chem. Res. 60 (1) (2021) 67-88. [13] S.I. Fujita, Y. Yamanishi, M. Arai, Synthesis of glycerol carbonate from glycerol and urea using zinc-containing solid catalysts: A homogeneous reaction, J. Catal. 297 (2013) 137-141. [14] J.L. Hu, J.J. Li, Y.L. Gu, Z.H. Guan, W.L. Mo, Y.M. Ni, T. Li, G.X. Li, Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI, Appl. Catal. A Gen. 386 (1-2) (2010) 188-193. [15] J.L. Hu, Y.L. Gu, Z.H. Guan, J.J. Li, W.L. Mo, T. Li, G.X. Li, An efficient palladium catalyst system for the oxidative carbonylation of glycerol to glycerol carbonate, ChemSusChem 4 (12) (2011) 1767-1772. [16] J.B. Li, T. Wang, Chemical equilibrium of glycerol carbonate synthesis from glycerol, J. Chem. Thermodyn. 43 (5) (2011) 731-736. [17] J. George, Y. Patel, S.M. Pillai, P. Munshi, Methanol assisted selective formation of 1, 2-glycerol carbonate from glycerol and carbon dioxide using n Bu2SnO as a catalyst, J. Mol. Catal. A Chem. 304 (1-2) (2009) 1-7. [18] H.G. Li, D.Z. Gao, P. Gao, F. Wang, N. Zhao, F.K. Xiao, W. Wei, Y.H. Sun, The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3-ZnO catalysts, Catal. Sci. Technol. 3 (10) (2013) 2801-2809. [19] H.G. Li, C.L. Xin, X. Jiao, N. Zhao, F.K. Xiao, L. Li, W. Wei, Y.H. Sun, Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X=F, Cl, Br) catalysts: The influence of the interlayer anion, J. Mol. Catal. A Chem. 402 (2015) 71-78. [20] J.X. Liu, Y.J. Li, H.M. Liu, D.H. He, Transformation of CO2 and glycerol to glycerol carbonate over CeO2 ZrO2 solid solution-effect of Zr doping, Biomass Bioenergy 118 (2018) 74-83. [21] D.G. Evans, R.C.T. Slade, Structural aspects of layered double hydroxides. Layered Double Hydroxides. Berlin, Heidelberg: Springer Berlin Heidelberg, (2005) 1-87. [22] S. He, Z. An, M. Wei, D.G. Evans, X. Duan, Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance, Chem. Commun. 49 (53) (2013) 5912-5920. [23] J.T. Feng, Y.F. He, Y.N. Liu, Y.Y. Du, D.Q. Li, Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects, Chem. Soc. Rev. 44 (15) (2015) 5291-5319. [24] P.J. Sideris, U.G. Nielsen, Z. Gan, C.P. Grey, Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy, Science 321 (5885) (2008) 113-117. [25] M.R. Liu, G.L. Fan, J.Y. Yu, L. Yang, F. Li, Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol, Dalton Trans. 47 (15) (2018) 5226-5235. [26] Y. Li, S.H. Chan, Q. Sun, Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review, Nanoscale 7 (19) (2015) 8663-8683. [27] H.Y. Yang, C. Zhang, P. Gao, H. Wang, X.P. Li, L.S. Zhong, W. Wei, Y.H. Sun, A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons, Catal. Sci. Technol. 7 (20) (2017) 4580-4598. [28] A. Cao, Z.B. Wang, H. Li, J.K. Noerskov, Relations between surface oxygen vacancies and activity of methanol formation from CO2 hydrogenation over In2O3 surfaces, ACS Catal. 11 (3) (2021) 1780-1786. [29] M.S. Frei, M. Capdevila-Cortada, R. Garcia-Muelas, C. Mondelli, N. Lopez, J.A. Stewart, D. Curulla Ferre, J. Perez-Ramirez, Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide, J. Catal. 361 (2018) 313-321. [30] P. Koranian, A. Kumar Dalai, R. Sammynaiken, Production of glycerol carbonate from glycerol and carbon dioxide using metal oxide catalysts, Chem. Eng. Sci. 286 (2024) 119687. [31] C. He, Y.K. Yu, Q. Shen, J.S. Chen, N.L. Qiao, Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnO x-CeO2 catalysts for chlorobenzene destruction, Appl. Surf. Sci. 297 (2014) 59-69. [32] D.D. Wei, Z.S. Huang, L.W. Wang, X.H. Chuai, S.M. Zhang, G.Y. Lu, Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties, Sens. Actuat. B Chem. 255 (2018) 1211-1219. [33] J.L. Bai, Y.B. Luo, C. Chen, Y. Deng, X. Cheng, B.X. An, Q. Wang, J.P. Li, J.Y. Zhou, Y.R. Wang, E.Q. Xie, Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection, Sens. Actuat. B Chem. 324 (2020) 128755. [34] K.L. Hu, Y.P. Yang, Y.J. Hu, W. Zeng, Y. Zhang, M.W. Wang, CuO surface doped In2O3/CeO2 nanofibers for ppb-ppm level carbon monoxide gas detection in low-temperature, Sens. Actuat. B Chem. 376 (2023) 132984. [35] D.M. Han, J.J. Yang, F.B. Gu, Z.H. Wang, Effects of rare earth element doping on the ethanol gas-sensing performance of three-dimensionally ordered macroporous In2O3, RSC Adv. 6 (51) (2016) 45085-45092. [36] Y. Bai, H.T. Fu, X.H. Yang, S.X. Xiong, S. Li, X.Z. An, Conductometric isopropanol gas sensor: Ce-doped In2O3 nanosheet-assembled hierarchical microstructure, Sens. Actuat. B Chem. 377 (2023) 133007. [37] S.R. Kirumakki, B.G. Shpeizer, G.V. Sagar, K.V.R. Chary, A. Clearfield, Hydrogenation of Naphthalene over NiO/SiO2-Al2O3 catalysts: Structure-activity correlation, J. Catal. 242 (2) (2006) 319-331. [38] Y.H. Feng, H.B. Yin, A.L. Wang, L.Q. Shen, L.B. Yu, T.S. Jiang, Gas phase hydrogenolysis of glycerol catalyzed by Cu/ZnO/MOx (MOx =Al2O3, TiO2, and ZrO2) catalysts, Chem. Eng. J. 168 (1) (2011) 403-412. [39] S.Y. Lu, H.Y. Yang, C.G. Yang, P. Gao, Y.H. Sun, Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst, J. Fuel Chem. Technol. 49 (8) (2021) 1132-1139. [40] N. Gao, Y.K. Zhou, M.J. Fan, H.T. Xu, Y.W. Chen, S.B. Shen, Promoting effect and role of alkaline earth metal added to ZrO2-TiO2-supported CeO2 for dichloromethane oxidation, Chem. Eng. J. 396 (2020) 125193. [41] A.H. Ruhaimi, M.A. Ab Aziz, High-performance flake-like mesoporous magnesium oxide prepared by eggshell membrane template for carbon dioxide capture, J. Solid State Chem. 300 (2021) 122242. [42] Y. Lu, L. Kang, D. Guo, Y.F. Zhao, Y.J. Zhao, S.P. Wang, X.B. Ma, Double-site doping of a V promoter on nix-V-MgAl catalysts for the DRM reaction: Simultaneous effect on CH4 and CO2 activation, ACS Catal. 11 (14) (2021) 8749-8765. [43] J.I. Di Cosimo, V.K. Diez, M. Xu, E. Iglesia, C.R. Apesteguia, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal. 178 (2) (1998) 499-510. [44] X. Xiao, J.J. Gao, S.B. Xi, S.H. Lim, A.K.W. Png, A. Borgna, W. Chu, Y. Liu, Experimental and in situ DRIFTs studies on confined metallic copper stabilized Pd species for enhanced CO2 reduction to formate, Appl. Catal. B Environ. 309 (2022) 121239. [45] M. Leon, E. Diaz, S. Bennici, A. Vega, S. Ordonez, A. Auroux, Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility, Ind. Eng. Chem. Res. 49 (8) (2010) 3663-3671. [46] J. Schnaidt, M. Heinen, Z. Jusys, R.J. Behm, Oxidation of 1-propanol on a Pt film electrode studied by combined electrochemical, in situ IR spectroscopy and online mass spectrometry measurements, Electrochim. Acta 104 (2013) 505-517. [47] D.A. Esan, M. Trenary, Surface chemistry of propanal, 2-propenol, and 1-propanol on Ru(001), Phys. Chem. Chem. Phys. 19 (17) (2017) 10870-10877. [48] M. Muir, D.L. Molina, A. Islam, M.K. Abdel-Rahman, M. Trenary, Adsorption properties of acrolein, propanal, 2-propenol, and 1-propanol on Ag(111), Phys. Chem. Chem. Phys. 22 (43) (2020) 25011-25020. [49] J.X. Liu, D.H. He, Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst, J. CO2 Util. 26 (2018) 370-379. [50] L.P. Ozorio, R. Pianzolli, L. da Cruz Machado, J.L. Miranda, C.C. Turci, A.C.O. Guerra, E.F. Souza-Aguiar, C.J.A. Mota, Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2, Appl. Catal. A Gen. 504 (2015) 187-191. [51] J.X. Liu, Y.J. Li, H.M. Liu, D.H. He, Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts, Appl. Catal. B Environ. 244 (2019) 836-843. [52] H.G. Li, X. Jiao, L. Li, N. Zhao, F.K. Xiao, W. Wei, Y.H. Sun, B.S. Zhang, Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites, Catal. Sci. Technol. 5 (2) (2015) 989-1005. [53] G. Pradhan, Y.C. Sharma, A greener and cheaper approach towards synthesis of glycerol carbonate from bio waste glycerol using CaO-TiO2 Nanocatalysts, J. Clean. Prod. 315 (2021) 127860. [54] Q. Zhang, H.Y. Yuan, X.T. Lin, N. Fukaya, T. Fujitani, K. Sato, J.C. Choi, Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide, Green Chem. 22 (13) (2020) 4231-4239. [55] Z.F. Zhang, S.S. Liu, L.J. Zhang, S. Yin, G.Y. Yang, B.X. Han, Driving dimethyl carbonate synthesis from CO2 and methanol and production of acetylene simultaneously using CaC2, Chem. Commun. 54 (35) (2018) 4410-4412. |