[1] L. Khezami, I. Lounissi, A. Hajjaji, A. Guesmi, A.A. Assadi, B. Bessais, Synthesis and characterization of TiO2 nanotubes (TiO2-NTs) decorated with platine nanoparticles (Pt-NPs): photocatalytic performance for simultaneous removal of microorganisms and volatile organic compounds, Materials 14 (23) (2021) 7341. [2] R. Zouzelka, I. Martiniakova, T. Duchacek, B. Muzikova, E. Mikyskova, J. Rathousky, Photocatalytic abatement of air pollutants: focus on their interference in mixtures, J. Photochem. Photobiol. Chem. 434 (2023) 114235. [3] S. Alofi, C. O'Rourke, A. Mills, Photocatalytic destruction of stearic acid by TiO2 films: evidence of highly efficient transport of photogenerated electrons and holes, J. Photochem. Photobiol. Chem. 435 (2023) 114273. [4] J.G. Mahy, S.D. Lambert, J. Geens, A. Daniel, D. Wicky, C. Archambeau, B. Heinrichs, Large scale production of photocatalytic TiO2 coating for volatile organic compound (VOC) air remediation, AIMS Mater. Sci. 5 (5) (2018) 945-956. [5] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res. 52 (10) (2013) 3581-3599. [6] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331-349. [7] J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev. 114 (19) (2014) 9919-9986. [8] Y.G. Zhang, M.Y. Wu, Y.F. Wang, X.L. Zhao, D.Y.C. Leung, Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method, J. Mater. Sci. Technol. 116 (2022) 169-179. [9] Y.J. Shu, M. He, J. Ji, H.B. Huang, S.W. Liu, D.Y.C. Leung, Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5, J. Hazard Mater. 364 (2019) 770-779. [10] Y.J. Shu, Y. Xu, H.B. Huang, J. Ji, S.M. Liang, M.Y. Wu, D.Y.C. Leung, Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation, Chemosphere 208 (2018) 550-558. [11] S. Weon, W. Choi, TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds, Environ. Sci. Technol. 50 (5) (2016) 2556-2563. [12] X. Zheng, M.M. Gao, C. Liang, S.G. Wang, X.H. Wang, Expanded graphite supported TiO2 composites using polyaniline as the anchor: improved catalytic performance for the electro-Fenton-like reaction, Electrochim. Acta 428 (2022) 140910. [13] R. Cheng, J.C. Xia, J.Y. Wen, P.P. Xu, X. Zheng, Nano metal-containing photocatalysts for the removal of volatile organic compounds: doping, performance, and mechanisms, Nanomaterials 12 (8) (2022) 1335. [14] Z. Shayegan, C.S. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review, Chem. Eng. J. 334 (2018) 2408-2439. [15] M.Y. Wang, J. Ioccozia, L. Sun, C.J. Lin, Z.Q. Lin, Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis, Energy Environ. Sci. 7 (7) (2014) 2182-2202. [16] K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C Photochem. Rev. 13 (3) (2012) 169-189. [17] X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale 5 (9) (2013) 3601-3614. [18] J.R. Chen, F.X. Qiu, W.Z. Xu, S.S. Cao, H.J. Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials, Appl. Catal. Gen. 495 (2015) 131-140. [19] M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.-Q. Zhang, Y. Lai, Z. Lin, A review of TiO2 nanostructured catalysts for sustainable H2 generation, Int. J. Hydrogen Energy 42 (2017) 8418-8449. [20] J. Morin, A. Gandolfo, B. Temime-Roussel, R. Strekowski, G. Brochard, V. Berge, S. Gligorovski, H. Wortham, Application of a mineral binder to reduce VOC emissions from indoor photocatalytic paints, Build. Environ. Times. 156 (2019) 225-232. [21] T. Kim, K. Yoo, M.G. Kim, Y.H. Kim, Photo-regeneration of zeolite-based volatile organic compound filters enabled by TiO2 photocatalyst, Nanomaterials 12 (17) (2022) 2959. [22] S. Mishra, N. Chakinala, A.G. Chakinala, P.K. Surolia, Photocatalytic degradation of methylene blue using monometallic and bimetallic Bi-Fe doped TiO2, Catal. Commun. 171 (2022) 106518. [23] S. Palliyalil, R.K.V. Chola, S. Vigneshwaran, N.C. Poovathumkuzhi, B.M. Chelaveettil, S. Meenakshi, Ternary system of TiO2 confined chitosan-polyaniline heterostructure photocatalyst for the degradation of anionic and cationic dyes, Environ. Technol. Innov. 28 (2022) 102586. [24] N. Karamoschos, D. Tasis, Photocatalytic evolution of hydrogen peroxide: a minireview, Energies 15 (17) (2022) 6202. [25] T. Mohammadi, S. Sharifi, Y. Ghayeb, T. Sharifi, M.M. Momeni, Photoelectrochemical water splitting and H2 generation enhancement using an effective surface modification of W-doped TiO2 nanotubes (WT) with co-deposition of transition metal ions, Sustainability 14 (20) (2022) 13251. [26] A.Y. Kurenkova, A.Y. Yakovleva, A.A. Saraev, E.Y. Gerasimov, E.A. Kozlova, V.V. Kaichev, Copper-modified titania-based photocatalysts for the efficient hydrogen production under UV and visible light from aqueous solutions of glycerol, Nanomaterials 12 (18) (2022) 3106. [27] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed 52 (29) (2013) 7372-7408. [28] I. Som, M. Roy, Recent development on titania-based nanomaterial for photocatalytic CO2 reduction: a review, J. Alloys Compd. 918 (2022) 165533. [29] K.Q. Shen, G. Saranya, M.Y. Chen, Theoretical prediction and design for chalcogenide-quantum-dot/TiO2 heterojunctions for solar cell applications, RSC Adv. 12 (45) (2022) 29375-29384. [30] V. Seiss, S. Thiel, M. Eichelbaum, Preparation and real world applications of titania composite materials for photocatalytic surface, air, and water purification: state of the art, Inorganics 10 (9) (2022) 139. [31] J.Y. Zhao, J.P. Sun, X.C. Meng, Z.Z. Li, Recent advances in vehicle exhaust treatment with photocatalytic technology, Catalysts 12 (9) (2022) 1051. [32] A. Borchers, T. Pieler, Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs, Genes 1 (3) (2010) 413-426. [33] C. Sivaraman, S. Vijayalakshmi, E. Leonard, S. Sagadevan, R. Jambulingam, Current developments in the effective removal of environmental pollutants through photocatalytic degradation using nanomaterials, Catalysts 12 (5) (2022) 544. [34] S. Ullah, E.P. Ferreira-Neto, A.A. Khan, I.P.M. Medeiros, H. Wender, Supported nanostructured photocatalysts: the role of support-photocatalyst interactions, Photochem. Photobiol. Sci. 22 (1) (2023) 219-240. [35] F. Nunzi, F. De Angelis, Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics, Chem. Sci. 13 (33) (2022) 9485-9497. [36] H. Sopha, M. Baudys, L. Hromadko, M. Lhotka, D. Pavlinak, J. Krysa, J.M. Macak, Scaling up anodic TiO2 nanotube layers-Influence of the nanotube layer thickness on the photocatalytic degradation of hexane and benzene, Appl. Mater. Today 29 (2022) 101567. [37] M. Abidi, W. Abou Saoud, A. Bouzaza, A. Hajjaji, B. Bessais, D. Wolbert, A.A. Assadi, S. Rtimi, Dynamics of VOCs degradation and bacterial inactivation at the interface of AgxO/Ag/TiO2 prepared by HiPIMS under indoor light, J. Photochem. Photobiol. Chem. 435 (2023) 114321. [38] S.M. Kang, J. Choi, G.Y. Park, H.R. Kim, J. Hwang, A novel and facile synthesis of Ag-doped TiO2 nanofiber for airborne virus/bacteria inactivation and VOC elimination under visible light, Appl. Surf. Sci. 599 (2022) 153930. [39] X.T. Feng, L.F. Gu, N.Y. Wang, Q.S. Pu, G.L. Liu, Fe/N Co-doped nano-TiO2 wrapped mesoporous carbon spheres for synergetically enhanced adsorption and photocatalysis, J. Mater. Sci. Technol. 135 (2023) 54-64. [40] R. Ghamarpoor, A. Fallah, T. Eghbali, Design of bifunctional sandwich-like Co@Si/Ox-MXene nanocomposite to increase the supercapacitor properties and removal of pollutants from wastewater, J. Alloys Compd. 983 (2024) 173920. [41] R. Ghamarpoor, M. Jamshidi, A. Fallah, F. Eftekharipour, Preparation of dual-use GPTES@ZnO photocatalyst from waste warm filter cake and evaluation of its synergic photocatalytic degradation for air-water purification, J. Environ. Manage. 342 (2023) 118352. [42] N. Moradi, M. Jamshidi, R. Ghamarpoor, M.R. Moghbeli, Surface functionalization/silane modification of CeO2 nanoparticles and their influences on photocatalytic activity of acrylic films for methylene blue removal, Prog. Org. Coat. 183 (2023) 107787. [43] S. Sambaza, A. Maity, K. Pillay, Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light, J. Environ. Chem. Eng. 7 (1) (2019) 102880. [44] F. Eftekharipour, M. Jamshidi, R. Ghamarpoor, Fabricating core-shell of silane modified nano ZnO; Effects on photocatalytic degradation of benzene in air using acrylic nanocomposite, Alex. Eng. J. 70 (2023) 273-288. [45] P. Singh, S.K. Shukla, Advances in polyaniline-based nanocomposites, J. Mater. Sci. 55 (4) (2020) 1331-1365. [46] R. Ghamarpoor, A. Fallah, M. Jamshidi, S. Salehfekr, Using waste silver metal in synthesis of Z-scheme Ag@WO3-CeO2 heterojunction to increase photodegradation and electrochemical performances, J. Ind. Eng. Chem. 128 (2023) 459-471. [47] K. Nagaraj, P. Thankamuniyandi, S. Kamalesu, S. Lokhandwala, N.M. Parekh, S. Sakthinathan, T.W. Chiu, C. Karuppiah, Green synthesis, characterization and efficient photocatalytic study of hydrothermal-assisted Ag@TiO2 nanocomposites, Inorg. Chem. Commun. 148 (2023) 110362. [48] H.W. Chen, Y. Ku, Y.L. Kuo, Photodegradation of o-cresol with Ag deposited on TiO2 under visible and UV light irradiation, Chem. Eng. Technol. 30 (9) (2007) 1242-1247. [49] C. Gu, W.Q. Weng, C. Lu, P. Tan, Y. Jiang, Q. Zhang, X.Q. Liu, L.B. Sun, Decorating MXene with tiny ZIF-8 nanoparticles: an effective approach to construct composites for water pollutant removal, Chin. J. Chem. Eng. 42 (2022) 42-48. [50] N. Pugazhenthiran, S. Murugesan, S. Anandan, High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium, J. Hazard Mater. 263 Pt 2 (2013) 541-549. [51] J.H. Zhang, Z.Y. Guo, Z.X. Yang, J. Wang, J. Xie, M.L. Fu, Y. Hu, TiO2@UiO-66 composites with efficient adsorption and photocatalytic oxidation of VOCs: investigation of synergistic effects and reaction mechanism, ChemCatChem 13 (2) (2021) 581-591. [52] L.X. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration, J. Catal. 196 (2) (2000) 253-261. |