1 Bauer, M., Craig, I.K., “Economic assessment of advanced process control-A survey and framework”, J. Process Control, 18, 2-18 (2008). 2 Edgar, T.F., “Control and operations:When does controllability equal profitability?”, Comput. Chem. Eng., 29, 41-49 (2004). 3 Martin, G.D., Turpin, L.E., Cline, R.P., “Estimating control function benefits”, Hydrocarbon Process., 69, 68-73 (1991). 4 Muske, K.B., “Estimation the economic benefit from improved process control”, Ind. Eng. Chem. Res., 42, 4535-4544 (2003). 5 Zhou, Y., Forbes, J.F., “Determining controller benefits via probabilistic optimization”, Int. J. Adapt. Control Signal Process., 17, 553-568 (2003). 6 Xu, F., Huang, B., Akande, S., “Performance assessment of model predictive control for variability and constraint tuning”, Ind. Eng. Chem. Res., 46, 1208-1219 (2007). 7 Huang, B., Edgar, C.T., “Model validation for industrial model predictive control systems”, Chem. Eng. Sci., 55, 2315-2327 (2000). 8 Ko, B.S., Edgar, T.F., “Performance assessment of constrained model predictive control systems”, AIChE J., 47 (6), 1363-1371 (2001). 9 Boyd, S., Barratt, C., Linear Control Design, Prentice Hall, New Jersey (1991). 10 Huang, B., Shah, S.L., Performance Assessment of Control Loops:Theory and Applications, Springer, New York (1999). 11 Cutler, C.R., Perry, R.T., “Real time optimization with multivariable control is required to maximize profits”, Comput. Chem. Eng., 7, 663-667 (1983). 12 Contreras, J.L., Marlin, T.E., “Control design for increased profit”, Comput. Chem. Eng., 24, 267-272 (2000). 13 Loeblein, C., Perkins, J.D., “Structural design for on-line process optimization (1) Dynamic economics of MPC”, AIChE J., 45 (4), 1018-1029 (1999). 14 Babri, P.A., Bandoni, J.A., Barton, G.W., Romagnoli, J.A., “Back-off calculations in optimizing control:A dynamic approach”, Comput. Chem. Eng., 19, 699-708 (1995). 15 Figueroa, J.L., Babri, P.A., Bandoni, J.A., Romagnoli, J.A., “Economic impact of disturbance and uncertainty parameters in chemical process-A dynamic back-off analysis”, Comput. Chem. Eng., 20, 453-461 (1996). 16 Narraway, L.T., Perkins, J.D., Barton, G.W., “Interaction between process design and process control:Economic analysis of process dynamic”, J. Process Control., 1, 243-250 (1991). 17 Young, J.C.C., Swartz, C.L.E., Ross, R., “On the effects of constraints, economics and uncertain disturbances on dynamic operability assessment”, Comput. Chem. Eng., 20, 667-682 (1996). 18 Loeblein, C., Perkins, J.D., “Economic analysis of different structures of on-line process optimization systems”, Comput. Chem. Eng., 22, 1257-1269 (1998). 19 Huang, B., “Pragmatic approach towards assessment of control loop performance”, Int. J. Adapt. Control Signal Process., 17, 589-608 (2003). 20 Kassmann, D.E., Badgwell, T.A., “Robust steady state target calculation for model predictive control”, AIChE J., 46 (5), 1007-1024 (2000). 21 Ying, C.M., Joseph, B., “Performance and stability analysis of LP-MPC and QP-MPC cascade control system”, AIChE J., 45 (7), 1521-1534, (1999). 22 Bequette, W.B., Process Control:Modeling, Design and Simulation, Prentice Hall, New Jersy (2003). 23 Rossiter, J.A., Model-based Predictive Control:A Practical Approach, CRC Press, USA (2003). |