[1] S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technology, Control. Eng. Pract. 11 (7) (2003) 733-764. [2] S. Engell, Feedback control for optimal process operation, J. Process Control 17 (3) (2007) 203-219. [3] L. Magni, M.D. Raimondo, F. Allgower, Nonlinear model predictive control: towards new challenging applications, Lecture Notes in Control and Information Sciences, vol. 384, Springer-Verlag, Berlin, 2009. [4] J.A.K. Suykens, Support vector machines and kernel-based learning for dynamical systemsmodelling, Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France, 2009, pp. 1029-1037. [5] S.B. Chitralekha, S.L. Shah, Application of support vector regression for developing soft sensors for nonlinear processes, Can. J. Chem. Eng. 88 (5) (2010) 696-709. [6] J.L.Wang, T. Yu, C.Y. Jin, On-line estimation of biomass in fermentation process using support vector machine, Chin. J. Chem. Eng. 14 (3) (2006) 383-388. [7] S.N. Zhang, F.L. Wang, D.K. He, R.D. Jia, Real-time product quality control for batch processes based on stacked least-squares support vector regressionmodels, Comput. Chem. Eng. 36 (10) (2012) 217-226. [8] J.A. Yu, Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses, Comput. Chem. Eng. 41 (11) (2012) 134-144. [9] P. Kadlec, R. Grbic, B. Gabrys, Review of adaptation mechanisms for data-driven soft sensors, Comput. Chem. Eng. 35 (1) (2011) 1-24. [10] J.l. Liu, Development of self-validating soft sensors using fast moving window partial least squares, Ind. Eng. Chem. Res. 49 (22) (2010) 11530-11546. [11] Y. Liu, H.Q. Wang, J. Yu, Selective recursive kernel learning for online identification of nonlinear systems with NARX form, J. Process Control 20 (2) (2010) 181-194. [12] L.J. Li, H.Y. Su, J. Chu, Modeling of isomerization of C8 aromatics by online least squares support vector machine, Chin. J. Chem. Eng. 17 (3) (2009) 437-444. [13] K. Chen, J. Ji, H.Q.Wang, Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes, Chem. Eng. Res. Des. 89 (10) (2011) 2117-2124. [14] D. Li, H. Li, T. Si, On-line robust modeling of nonlinear systems using support vector regression, Proceedings of 2nd International Conference on Advanced Computer Control (ICACC), Shenyang, China, 2010, pp. 204-208. [15] J. Ma, J. Theiler, S. Perkins, Accurate online support vector regression, Neural Comput. 15 (11) (2003) 2683-2704. [16] S. Iplikci, Online trained support vector machines-based generalized predictive control of non-linear systems, Int. J. Adapt. Control Sig. Process 20 (10) (2006) 599-621. [17] H. Wang, D.Y. Pi, Y.X. Su, Online SVM regression algorithm-based adaptive inverse control, Neurocomputing 70 (4-6) (2007) 952-959. [18] S.R. Sergio,M.J. Fuente, Fault tolerance in the framework of support vectormachines based model predictive control, Eng. Appl. Artif. Intell. 23 (7) (2010) 1127-1139. [19] P. Wang, H.G. Tian, X.M. Tian, D.X. Huang, A new approach for online adaptive modeling using incremental support vector regression, CIESC J. 61 (8) (2010) 2040-2045. [20] J. Zhan,M. Ishida, Themulti-step predictive control of nonlinear SISO processes with a neural model predictive control (NMPC) method, Comput. Chem. Eng. 21 (2) (1997) 201-210. [21] W.D. Zhou, L. Zhang, L.C. Jiao, An analysis of SVMs generalization performance, Acta Electron. Sin. 29 (5) (2001) 590-594. [22] Y. Liu, Y.C. Gao, Z.L. Gao, H.Q.Wang, P. Li, Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form, Ind. Eng. Chem. Res. 49 (17) (2010) 8209-8218. [23] E. Wael, K. Mehmed, Local properties of RBF-SVM during training for incremental learning, Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, 2009, pp. 779-786. [24] W.M. Zhang, G.L. He, D.Y. Pi, Y.X. Su, SVM with polynomial kernel function based nonlinear model one-step-ahead predictive control, Chin. J. Chem. Eng. 13 (3) (2005) 373-379. [25] E. Hernandez, Y. Arkun, Study of the control-relevant properties of back propagation neural network models of nonlinear dynamical systems, Comput. Chem. Eng. 16 (4) (1992) 227-240. |