[1] H. Wu, A.J. Li, H.W. Zhang, S.C. Gao, S.Q. Li, J.D. Cai, R.X. Yan, Z.L. Xing, The potential and sustainable strategy for swine wastewater treatment: Resource recovery, Chemosphere 336 (2023) 139235. [2] F.X. Zhu, C.L. Hong, W.P. Wang, H.H. Lyu, W.J. Zhu, H. Xv, Y.L. Yao, A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation, J. Clean. Prod. 270 (2020) 122373. [3] X.C. Zheng, D.S. Zou, Q.D. Wu, H. Wang, S.H. Li, F. Liu, Z.H. Xiao, Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure, Waste Manag. 150 (2022) 75-89. [4] J. Menz, O. Olsson, K. Kummerer, Antibiotic residues in livestock manure: does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment? J. Hazard. Mater. 379 (2019) 120807. [5] G.C. Su, H.C. Ong, N.W. Mohd Zulkifli, S. Ibrahim, W.H. Chen, C.T. Chong, Y.S. Ok, Valorization of animal manure via pyrolysis for bioenergy: a review, J. Clean. Prod. 343 (2022) 130965. [6] C.H. Zhou, H.J. Huang, L. Li, Z.Q. Pan, X.F. Xiao, J.X. Wang, Advances in hydrothermal carbonization of livestock manure. Sustainable Green Chemical Processes and their Allied Applications. Springer International Publishing, (2020), pp 83-205. [7] I. Adanez-Rubio, I. Fonts, P. de Blas, F. Viteri, G. Gea, M.U. Alzueta, Exploratory study of polycyclic aromatic hydrocarbons occurrence and distribution in manure pyrolysis products, J. Anal. Appl. Pyrolysis 155 (2021) 105078. [8] S.H. Li, D.S. Zou, L.C. Li, L. Wu, F. Liu, X.Y. Zeng, H. Wang, Y.F. Zhu, Z.H. Xiao, Evolution of heavy metals during thermal treatment of manure: a critical review and outlooks, Chemosphere 247 (2020) 125962. [9] H. Lin, W.C. Sun, Q.G. Yu, J.W. Ma, Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure, Environ. Pollut. 263 (Pt A) (2020) 114439. [10] R.P. Ipiales, A.F. Mohedano, E. Diaz-Portuondo, E. Diaz, M.A. de la Rubia, Co-hydrothermal carbonization of swine manure and lignocellulosic waste: a new strategy for the integral valorization of biomass wastes, Waste Manag. 169 (2023) 267-275. [11] J. Qiu, M. Fernandes de Souza, A.A. Robles-Aguilar, S. Ghysels, Y.S. Ok, F. Ronsse, E. Meers, Improving biochar properties by co-pyrolysis of pig manure with bio-invasive weed for use as the soil amendment, Chemosphere 312 (Pt 1) (2023) 137229. [12] V.A. Schommer, B.M. Wenzel, D.J. Daroit, Anaerobic co-digestion of swine manure and chicken feathers: Effects of manure maturation and microbial pretreatment of feathers on methane production, Renew. Energy 152 (2020) 1284-1291. [13] X.F. Wang, J.X. Wan, G.F. Jiang, T.J. Yang, S. Banerjee, Z. Wei, X.L. Mei, V.P. Friman, Y.C. Xu, Q.R. Shen, Compositional and functional succession of bacterial and fungal communities is associated with changes in abiotic properties during pig manure composting, Waste Manag. 131 (2021) 350-358. [14] H.J. Huang, X.Z. Yuan, Recent progress in the direct liquefaction of typical biomass, Prog. Energy Combust. Sci. 49 (2015) 59-80. [15] H.J. Huang, X.Z. Yuan, G.Q. Wu, Liquefaction of biomass for bio-oil products. Waste Biomass Management - A Holistic Approach. Springer International Publishing, (2017), pp 31-250. [16] D.R. Vardon, B.K. Sharma, J. Scott, G. Yu, Z.C. Wang, L. Schideman, Y.H. Zhang, T.J. Strathmann, Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge, Bioresour. Technol. 102 (17) (2011) 8295-8303. [17] S.N. Xiu, A. Shahbazi, V. Shirley, M.R. Mims, C.W. Wallace, Effectiveness and mechanisms of crude glycerol on the biofuel production from swine manure through hydrothermal pyrolysis, J. Anal. Appl. Pyrolysis 87 (2) (2010) 194-198. [18] S.N. Xiu, A. Shahbazi, V.B. Shirley, L.J. Wang, Swine manure/crude glycerol co-liquefaction: physical properties and chemical analysis of bio-oil product, Bioresour. Technol. 102 (2) (2011) 1928-1932. [19] S.N. Xiu, A. Shahbazi, C.W. Wallace, L.J. Wang, D. Cheng, Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol, Energy Convers. Manag. 52 (2) (2011) 1004-1009. [20] A. Ali Shah, S. Sohail Toor, T. Hussain Seehar, K.K. Sadetmahaleh, T. Helmer Pedersen, A. Haaning Nielsen, L. Aistrup Rosendahl, Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability, Fuel 288 (2021) 119407. [21] W.T. Chen, Y.H. Zhang, J.X. Zhang, L. Schideman, G. Yu, P. Zhang, M. Minarick, Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil, Appl. Energy 128 (2014) 209-216. [22] K.P.R. Dandamudi, T. Murdock, P.J. Lammers, S.G. Deng, E.H. Fini, Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure, Resour. Conserv. Recycl. 170 (2021) 105564. [23] Z.M. Luo, J.B. Xiong, M. Jiang, L. Li, G.F. Wang, H.J. Huang, Co-treatment of swine manure and lignocellulosic biomass by liquefaction: Parameter optimization, product characterization, reaction mechanism, J. Supercrit. Fluids 205 (2024) 106138. [24] D. Cheng, L.J. Wang, A. Shahbazi, S.N. Xiu, B. Zhang, Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure, Energy Convers. Manag. 87 (2014) 378-384. [25] D. Cheng, L.J. Wang, A. Shahbazi, S.N. Xiu, B. Zhang, Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure, Fuel 130 (2014) 251-256. [26] F. Conti, S.S. Toor, T.H. Pedersen, T.H. Seehar, A.H. Nielsen, L.A. Rosendahl, Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients, Energy Convers. Manag. 216 (2020) 112925. [27] H.G. Li, J.W. Lu, Y.H. Zhang, Z.D. Liu, Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals, J. Anal. Appl. Pyrolysis 135 (2018) 133-140. [28] J.W. Lu, J. Watson, J.L. Zeng, H.G. Li, Z.B. Zhu, M. Wang, Y.H. Zhang, Z.D. Liu, Biocrude production and heavy metal migration during hydrothermal liquefaction of swine manure, Process. Saf. Environ. Prot. 115 (2018) 108-115. [29] Q.Q. Lang, B. Zhang, Y. Li, Z.G. Liu, W.T. Jiao, Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure, Waste Manag. 100 (2019) 84-90. [30] Z.Q. Pan, H.J. Huang, C.F. Zhou, F.Y. Lai, X.W. He, J.B. Xiong, X.F. Xiao, Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents, J. Cent. South Univ. 26 (10) (2019) 2771-2784. [31] T. Yang, H.J. Huang, F.Y. Lai, Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China, Trans. Nonferrous Met. Soc. China 27 (10) (2017) 2249-2259. [32] X.Z. Yuan, H.J. Huang, G.M. Zeng, H. Li, J.Y. Wang, C.F. Zhou, H.N. Zhu, X.K. Pei, Z.F. Liu, Z.T. Liu, Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge, Bioresour. Technol. 102 (5) (2011) 4104-4110. [33] H.J. Huang, X.Z. Yuan, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200 (2016) 991-998. [34] J.X. Wang, S.W. Chen, F.Y. Lai, S.Y. Liu, J.B. Xiong, C.F. Zhou, Yi-Yu, H.J. Huang, Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar, J. Supercrit. Fluids 162 (2020) 104858. [35] Y.C. Chang, X.F. Xiao, H.J. Huang, Y.D. Xiao, H.S. Fang, J.B. He, C.H. Zhou, Transformation characteristics of polycyclic aromatic hydrocarbons during hydrothermal liquefaction of sewage sludge, J. Supercrit. Fluids 170 (2021) 105158. [36] A. Ikem, N.O. Egiebor, K. Nyavor, Trace elements in water, fish and sediment from tuskegee lake, southeastern usa, Water Air Soil Pollut. 149 (1) (2003) 51-75. [37] S. Zhao, C.H. Feng, Y.R. Yang, J.F. Niu, Z.Y. Shen, Risk assessment of sedimentary metals in the Yangtze Estuary: new evidence of the relationships between two typical index methods, J. Hazard. Mater. 241-242 (2012) 164-172. [38] T.T. Liu, L.F. Tian, Z.G. Liu, J. He, H.H. Fu, Q.F. Huang, H.H. Xue, Z.C. Huang, Distribution and toxicity of polycyclic aromatic hydrocarbons during CaO-assisted hydrothermal carbonization of sewage sludge, Waste Manag. 120 (2021) 616-625. [39] C. Quan, G.T. Zhang, N.B. Gao, Comparison of PAHs behaviors in the pyrolysis products of oily sludge with different ash contents, J. Anal. Appl. Pyrolysis 175 (2023) 106184. [40] X.C. Zheng, D.S. Zou, Q.D. Wu, L.Q. Zhang, J.L. Tang, F. Liu, Z.H. Xiao, Speciation, leachability, and phytoaccessibility of heavy metals during thermochemical liquefaction of contaminated peanut straw, Waste Manag. 176 (2024) 20-29. [41] Z. Zhu, Z.Q. Sun, X.F. Yu, S. Zhang, X.X. Cao, X.L. Liu, Z.W. Guo, L. Rosendahl, G.Y. Chen, Valorization of low heavy metal-accumulating plants through catalytic hydrothermal liquefaction with attapulgite: Product characterization and migration behavior of heavy metals, Energy 295 (2024) 131076. [42] S.Z. Huang, Z.W. Huang, Z.B. Chen, J. Wang, F. Evrendilek, J.Y. Liu, Y. He, Y. Ninomiya, W.M. Xie, G.Z. Zhuang, S.Y. Sun, Simultaneous optimizations of heavy metal immobilizations, products, temperature, and atmosphere dependency by acid pretreatment-assisted pyrolysis and gasification of hyperaccumulator (Pteris vittate L.) biomass, J. Clean. Prod. 450 (2024) 142004. [43] W. Su, P. Liu, C. Cai, H. Ma, B. Jiang, Y. Xing, Y. Liang, L. Cai, C. Xia, Q.V. Le, C. Sonne, S.S. Lam, Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification, J. Hazard. Mater. 402 (2021) 123541. [44] S.Y. Xie, G.W. Yu, C.X. Li, F.T. You, J. Li, R.Q. Tian, G. Wang, Y. Wang, Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge, Environ. Sci. Pollut. Res. Int. 26 (16) (2019) 16537-16547. [45] G.F. Chen, X.F. Yang, S.Y. Chen, Y. Dong, L. Cui, Y. Zhang, P. Wang, X.Q. Zhao, C.Y. Ma, Transformation of heavy metals in lignite during supercritical water gasification, Appl. Energy 187 (2017) 272-280. [46] L. Zhao, Y.H. Dong, H. Wang, Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in farm-raised livestock feeds and manures in Jiangsu, China, Sci. Total Environ. 450 (2013) 348-355. [47] L. Rey-Salgueiro, M.S. Garcia-Falcon, E. Martinez-Carballo, C. Gonzalez-Barreiro, J. Simal-Gandara, The use of manures for detection and quantification of polycyclic aromatic hydrocarbons and 3-hydroxybenzo [a] pyrene in animal husbandry, Sci. Total Environ. 406 (1-2) (2008) 279-286. [48] K. Suominen, M. Verta, S. Marttinen, Hazardous organic compounds in biogas plant end products: soil burden and risk to food safety, Sci. Total Environ. 491-492 (2014) 192-199. [49] J.M. De la Rosa, A.M. Sanchez-Martin, P. Campos, A.Z. Miller, Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential, Sci. Total Environ. 667 (2019) 578-585. [50] G. Purcaro, S. Moret, L.S. Conte, Overview on polycyclic aromatic hydrocarbons: occurrence, legislation and innovative determination in foods, Talanta 105 (2013) 292-305. [51] P. Devi, A.K. Dalai, Occurrence, distribution, and toxicity assessment of polycyclic aromatic hydrocarbons in biochar, biocrude, and biogas obtained from pyrolysis of agricultural residues, Bioresour. Technol. 384 (2023) 129293. [52] M. Gong, Y.L. Wang, Y.J. Fan, W. Zhu, H.W. Zhang, Y. Su, Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways, Waste Manag. 72 (2018) 287-295. [53] Y. Li, Y.B. Zhai, Y. Zhu, C. Peng, T.F. Wang, G.M. Zeng, D.B. Wu, X. Zhao, Distribution and conversion of polycyclic aromatic hydrocarbons during the hydrothermal treatment of sewage sludge, Energy Fuels 31 (9) (2017) 9542-9549. [54] M. Gong, W. Zhu, H.W. Zhang, Y. Su, Y.J. Fan, Polycyclic aromatic hydrocarbon formation from gasification of sewage sludge in supercritical water: The concentration distribution and effect of sludge properties, J. Supercrit. Fluids 113 (2016) 112-118. [55] Z.R. Xu, W. Zhu, M. Li, H.W. Zhang, M. Gong, Quantitative analysis of polycyclic aromatic hydrocarbons in solid residues from supercritical water gasification of wet sewage sludge, Appl. Energy 102 (2013) 476-483. [56] B.X. Xie, J.H. Qin, H. Sun, S. Wang, X. Li, Leaching behavior of polycyclic aromatic hydrocarbons (PAHs) from oil-based residues of shale gas drill cuttings, Environ. Pollut. 288 (2021) 117773. [57] A. Zielinska, P. Oleszczuk, Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars, Chemosphere 153 (2016) 68-74. [58] N.N. Peng, Y. Li, T.T. Liu, Q.Q. Lang, C. Gai, Z.G. Liu, Polycyclic aromatic hydrocarbons and toxic heavy metals in municipal solid waste and corresponding hydrochars, Energy Fuels 31 (2) (2017) 1665-1671. |