[1] D.J. Liu, Q. Wang, J. Wu, Y.X. Liu, A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas, Environ. Chem. Lett. 17 (1) (2019) 259-276. [2] P. Jahanbakhsh-Bonab, J.J. Sardroodi, Potential of amine-based DES for separation of CO2 and H2S from NG: study of temperature effect, J. Environ. Chem. Eng. 11 (5) (2023) 110517. [3] A.K. Johni, E. OmidbakhshAmiri, Simulation and multi-objective optimization of Claus process of sulfur recovery unit, J. Environ. Chem. Eng. 11 (5) (2023) 110969. [4] A. Raj, S. Ibrahim, A. Jagannath, Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes, Prog. Energy Combust. Sci. 80 (2020) 100848. [5] X.M. Sun, W.J. Huang, H.M. Xu, Z. Qu, N.Q. Yan, Recovery of elemental sulfur direct from nonferrous flue gas by a low-temperature Claus process with H2S as the interim reducer, Fuel 359 (2024) 130352. [6] S.M. Hosseini, R. Alizadeh, A. Alizadehdakhel, Y. Behjat, P. Nooriasl, Enhancement of gas distribution uniformity in a Claus process catalytic reactor using computational fluid dynamics, Chem. Eng. Process. Process. Intensif. 144 (2019) 107653. [7] H. Kazempour, F. Pourfayaz, M. Mehrpooya, Modeling and multi-optimization of thermal section of Claus process based on kinetic model, J. Nat. Gas Sci. Eng. 38 (2017) 235-244. [8] Y.H. Chan, A.C.M. Loy, K.W. Cheah, S.Y.W. Chai, L.H. Ngu, B.S. How, C. Li, S.S.M. Lock, M.K. Wong, C.L. Yiin, B.L.F. Chin, Z.P. Chan, S.S. Lam, Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook, Chem. Eng. J. 458 (2023) 141398. [9] J. Berner-Cambot, C. Vovelle, R. Delbourgo, Flame structures of H2S: air diffusion flames, Symp. Int. Combust. 18 (1) (1981) 777-783. [10] N. Abumounshar, A. Raj, S. Ibrahim, Novel processes for lean acid gas utilization for sulfur production with high efficiency, Chem. Eng. Sci. 248 (2022) 117194. [11] Y. Li, Q.H. Guo, X.L. Yu, Z.H. Dai, Y.F. Wang, G.S. Yu, F.C. Wang, Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame, Appl. Energy 206 (2017) 947-958. [12] H. Selim, A.K. Gupta, A. Al Shoaibi, Effect of CO2 and N2 concentration in acid gas stream on H2S combustion, Appl. Energy 98 (2012) 53-58. [13] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene to acid gas (H2S and CO2) combustion in H2/O2-N2 flame under Claus condition, Appl. Energy 149 (2015) 62-68. [14] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under Claus conditions, Appl. Energy 109 (2013) 119-124. [15] X. Tao, X.L. Yu, S.L. Guo, A. Raheem, Y.F. Gao, L. Ding, Z.H. Dai, G.S. Yu, F.C. Wang, Effects of equivalence ratios on the normal and inverse diffusion flame of acid gas combustion in the pure oxygen atmosphere, Int. J. Hydrog. Energy 48 (38) (2023) 14464-14476. [16] X. Tao, F. Zhou, X.L. Yu, S.L. Guo, Y.F. Gao, L. Ding, G.S. Yu, Z.H. Dai, F.C. Wang, Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: an experimental and kinetic modeling, Chin. J. Chem. Eng. 59 (2023) 105-117. [17] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Xylene addition effects to H2S combustion under Claus condition, Fuel 150 (2015) 1-7. [18] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of benzene on product evolution in a H2S/O2 flame under Claus condition, Appl. Energy 145 (2015) 21-26. [19] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene in hydrogen sulfide combustion under Claus condition, Appl. Energy 112 (2013) 60-66. [20] H. Selim, A. Al Shoaibi, A.K. Gupta, Effect of H2S in methane/air flames on sulfur chemistry and products speciation, Appl. Energy 88 (8) (2011) 2593-2600. [21] H. Selim, A. Al Shoaibi, A.K. Gupta, Fate of sulfur with H2S injection in methane/air flames, Appl. Energy 92 (2012) 57-64. [22] Y. Li, Q.H. Guo, Z.H. Dai, Y.C. Dong, G.S. Yu, F.C. Wang, Study of oxidation for gas mixture of H2S and CH4 in a non-premixed flame under oxygen deficient condition, Appl. Therm. Eng. 117 (2017) 659-667. [23] A.K. Gupta, S. Ibrahim, A. Al Shoaibi, Advances in sulfur chemistry for treatment of acid gases, Prog. Energy Combust. Sci. 54 (2016) 65-92. [24] H.R. Mahdipoor, A. Dehghani Ashkezari, Feasibility study of a sulfur recovery unit containing mercaptans in lean acid gas feed, J. Nat. Gas Sci. Eng. 31 (2016) 585-588. [25] S. Ibrahim, R.K. Rahman, A. Raj, Roles of hydrogen sulfide concentration and fuel gas injection on aromatics emission from Claus furnace, Chem. Eng. Sci. 172 (2017) 513-527. [26] S. Ibrahim, R.K. Rahman, A. Raj, A split-flow sulfur recovery process for the destruction of aromatic hydrocarbon contaminants in acid gas, J. Nat. Gas Sci. Eng. 97 (2022) 104378. [27] X. Tao, X.L. Yu, S.L. Guo, F. Zhou, Y.F. Gao, L. Ding, Z.H. Dai, F.C. Wang, Oxy-fuel combustion of lean acid gas for high sulfur recovery efficiency based on straight-through Claus process, Gas Sci. Eng. 110 (2023) 204868. [28] X.D. Song, R.M. Wu, Y. Zhou, J.F. Wang, J.T. Wei, J.Y. Li, G.S. Yu, Understanding the influence of burner structure on the stability and chemiluminescence of inverse diffusion flame, Int. J. Hydrog. Energy 46 (48) (2021) 24461-24471. [29] S. Yan, Y. Gong, Q.H. Guo, G.S. Yu, F.C. Wang, Numerical study of CH* chemiluminescence and heat release rate in methane inverse diffusion flame, Fuel 357 (2024) 129963. [30] A.M. Elbaz, W.L. Roberts, Stability and structure of inverse swirl diffusion flames with weak to strong swirl, Exp. Therm. Fluid Sci. 112 (2020) 109989. [31] R.M. Wu, X.D. Song, J.T. Wei, Y.H. Bai, J.F. Wang, P. Lv, T.B. He, A.M. Parvez, G.S. Yu, Hydrogen addition in methane-oxygen laminar inverse diffusion flames: a study focused on free radical chemiluminescence and soot formation, Int. J. Hydrog. Energy 54 (2024) 1029-1039. [32] V. Patel, A. Dekhatawala, R. Shah, Effect of flow and reactive environment on acoustic characteristic of H2-CH4 inverse diffusion flame, Int. J. Hydrog. Energy 49 (2024) 957-967. [33] F. Xie, Y. Zhou, X.D. Song, Y.H. Bai, R.M. Wu, M. Yao, G.S. Yu, Investigation of OH chemiluminescence with lift-off characteristic in methane-oxygen inverse diffusion flame, Int. J. Hydrog. Energy 46 (2) (2021) 1461-1472. [34] A. Mehmood, H. Alhasani, N. Alamoodi, Y.F. AlWahedi, S. Ibrahim, A. Raj, An evaluation of kinetic models for the simulation of Claus reaction furnaces in sulfur recovery units under different feed conditions, J. Nat. Gas Sci. Eng. 74 (2020) 103106. [35] S. Mohammed, A. Raj, A. Al Shoaibi, P. Sivashanmugam, Formation of polycyclic aromatic hydrocarbons in Claus process from contaminants in H2S feed gas, Chem. Eng. Sci. 137 (2015) 91-105. [36] S. Ibrahim, A. Jagannath, A. Raj, Aromatics oxidation in the furnace of sulfur recovery units: Model development and optimization, J. Nat. Gas Sci. Eng. 83 (2020) 103581. [37] S. Ibrahim, R.K. Rahman, A. Raj, Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from Claus furnace, Ind. Eng. Chem. Res. 56 (41) (2017) 11713-11725. [38] V.A. Savelieva, N.S. Titova, A.M. Starik, Modeling study of hydrogen production via partial oxidation of H2S-H2O blend, Int. J. Hydrog. Energy 42 (16) (2017) 10854-10866. [39] B.A. Rabee, The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions, Energy 160 (2018) 1201-1207. [40] J. Miao, C.W. Leung, C.S. Cheung, Effect of hydrogen percentage and air jet Reynolds number on fuel lean flame stability of LPG-fired inverse diffusion flame with hydrogen enrichment, Int. J. Hydrog. Energy 39 (1) (2014) 602-609. [41] N.O. Guldal, H.E. Figen, S.Z. Baykara, New catalysts for hydrogen production from H2S: preliminary results, Int. J. Hydrog. Energy 40 (24) (2015) 7452-7458. [42] S.L. Guo, X. Tao, F. Zhou, M.Y. Yu, Y.F. Wu, Y.F. Gao, L. Ding, F.C. Wang, Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame, Chin. J. Chem. Eng. 65 (2024) 106-116. [43] T.Y. Cong, A. Raj, J. Chanaphet, S. Mohammed, S. Ibrahim, A. Al Shoaibi, A detailed reaction mechanism for hydrogen production via hydrogen sulphide (H2S) thermolysis and oxidation, Int. J. Hydrog. Energy 41 (16) (2016) 6662-6675. [44] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production, Appl. Energy 208 (2017) 905-919. [45] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition, Appl. Energy 190 (2017) 824-834. [46] A. Ravikumar, A. Raj, S. Ibrahim, R.K. Rahman, A. Al Shoaibi, Kinetic simulations of H2 production from H2S pyrolysis in sulfur recovery units using a detailed reaction mechanism, Energy Fuels 30 (12) (2016) 10823-10834. [47] H. Selim, A. Al Shoaibi, A.K. Gupta, Experimental examination of flame chemistry in hydrogen sulfide-based flames, Appl. Energy 88 (8) (2011) 2601-2611. [48] E. Spatolisano, G. De Guido, L.A. Pellegrini, V. Calemma, A.R. de Angelis, M. Nali, Process sensitivity analysis and techno-economic assessment of hydrogen sulphide to hydrogen via H2S methane reformation, J. Clean. Prod. 330 (2022) 129889. [49] V. Hurai, C. Ivan, K. Randive, Hydrogen recovery from H2S-CH4 inclusions trapped in quartz triggered by green laser-induced photolysis of polysulphane-sulphur bonds, Appl. Geochem. 106 (2019) 75-81. |