1 Horacio, G., Abante, R., Luis, C., Jorge, R., “Isomerization of C8 aromatics over a Pt/Mordenite Catalyst. A statistical model”, Ind. Eng. Chem. Res., 35, 3964-3972(1996). 2 Xu, O.G., Su, H.Y., Jin, X.M., Chu, J., “Kinetic model for hydroisomerization reaction of C8 aromatics”, J. Chem. Eng. Chin. Uni., 21(3), 429-435(2007). 3 Li, Y.G., Chang, X.D., Zeng, Z.H., “Kinetics study of the isomerization of xylene on HZSM-5 zeolite.1.Kinetics model and reaction mechanism”, Ind. Eng. Chem. Res., 31(1), 187-192(1992). 4 Iliyas, A., Al-Khattaf, S., “Xylene isomerization over USY zeolite in a riser simulator:A comprehensive kinetic model”, Ind. Eng. Chem. Res., 43, 1349-1358(2004). 5 Wu, D.X., Lin, Z.X., “Kinetic modeling of hydroisomerization of C8 aromatics(I) Modeling and estimation of relative rate constants by the wei-prater method”, J. Chem. Ind. Eng.(China), 3, 257-267(1985).(in Chinese) 6 Wu, D.X., Lin, Z.X., “Kinetic modeling of hydroisomerization of C8 aromatics(II) Mathematical expression of ray vector and its application”, J. Chem. Ind. Eng.(China), 3, 268-277(1985).(in Chinese) 7 Li, Z.H., Chen, D.Z., Zhuang, L., Hu, S.X., “RBF-MCSR approach as modeling technique for equipment of isomerization of xylene”, J. Chem. Ind. Eng.(China), 6, 627-632(2002).(in Chinese) 8 Yan, X., “Aromatic hydrocarbon isomerization process modeling based on adaptive artificial neural networks”, Control and Instruments in Chemical Industry, 33(5), 6-8(2006). 9 Vapnik, V., Statistical Learning Theory, John Wiley, New York(1998). 10 Vapnik, V., The Nature of statistical Learning Theory, Spring-Verlag, New York(1995). 11 Suykens, J. A.K., Vandewalle, J., “Least squares support vector machine classifiers”, Neural Processing Letters, 9, 293-300(1999). 12 Lee, D.E., Song, J.H., Song, S.O., Yoon, E.S., “Weighted support vector machine for quality estimation in the polymerization process”, Ind. Eng. Chem. Res., 44(7), 2101-2105(2005). 13 Zhang, Y., Su, H.Y., Liu, R.L., Chu, J., “Fuzzy support vector regression model of 4CBA concentration of industrial PTA oxidation process”, Chin. J. Chem. Eng., 13(5), 642-648(2005). 14 Zheng, X., Qian, F., “Application of least squares support vector machine within evidence framework in PTA process”, J. Chem. Ind. Eng.(China), 57(7), 1612-1616(2006).(in Chinese) 15 Li, L., Su, H.Y., Chu, J., “Generalized predictive control with online least squares support vector machines”, Acta Automation Sinica, 33(11), 1182-1188(2007). 16 Suykens, J.A.K., Vandewalle, J., “Multiclass least squares support vector machines”, In:International Joint Conference on Neural Networks, Washington(1999). 17 Ljung, L., System Identification—Theory for the User, Prentice Hall PTR, Sebastopol(1999). |