[1] J.B. Powell, Application of multiphase reaction engineering and process intensification to the challenges of sustainable future energy and chemicals, Chem. Eng. Sci. 157 (2017) 15-25 [2] V.G. Pangarkar, Process intensification in multiphase reactors:from concept to reality, Chem. Eng. Process. Process. Intensif. 120 (2017) 1-8 [3] R.P. Utikar, V.V. Ranade, Intensifying multiphase reactions and reactors:strategies and examples, ACS Sustain. Chem. Eng. 5 (5) (2017) 3607-3622 [4] Y.H. Tian, S.E. Demirel, M.M.F. Hasan, E.N. Pistikopoulos, An overview of process systems engineering approaches for process intensification:state of the art, Chem. Eng. Process. Process. Intensif. 133 (2018) 160-210 [5] W. Krieger, J. Lamsfuß, W. Zhang, N. Kockmann, Local mass transfer phenomena and chemical selectivity of gas-liquid reactions in capillaries, Chem. Eng. Technol. 40 (11) (2017) 2134-2143 [6] A. García-Abuín, D. Gómez-Díaz, M. Losada, J.M. Navaza, Bubble column gas-liquid interfacial area in a polymer+surfactant+water system, Chem. Eng. Sci. 75 (2012) 334-341 [7] D.N. Miller, Interfacial area, bubble coalescence and mass transfer in bubble column reactors, AIChE J. 29 (2) (1983) 312-319 [8] S.A. Patel, J.G. Daly, D.B. Bukur, Holdup and interfacial area measurements using dynamic gas disengagement, AIChE J., 35 (1989) 931-942 [9] W.D. Deckwer, A. Schumpe, Improved tools for bubble column reactor design and scale-up, Chem. Eng. Sci. 48 (5) (1993) 889-911 [10] Y.T. Shah, B.G. Kelkar, S.P. Godbole, W.D. Deckwer, Design parameters estimations for bubble column reactors, AIChE J. 28 (3) (1982) 353-379 [11] J. Segovia-Hernández, A. Bonilla-Petriciolet, Process Intensification in Chemical Engineering:Design Optimization and Control, Springer International Publishing, Switzerland, 2016 [12] M. Akbari, M. Rahimi, M. Faryadi, Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves, Chin. J. Chem. Eng. 25 (9) (2017) 1143-1152 [13] K. Wojtas, W. Orciuch, Ł. Makowski, Large eddy simulations of reactive mixing in jet reactors of varied geometry and size, Processes 8 (9) (2020) 1101 [14] T. Kumaresan, J.B. Joshi, Effect of impeller design on the flow pattern and mixing in stirred tanks, Chem. Eng. J. 115 (3) (2006) 173-193 [15] M.H. Xie, J.Y. Xia, Z. Zhou, J. Chu, Y.P. Zhuang, S.L. Zhang, Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors, Ind. Eng. Chem. Res. 53 (14) (2014) 5941-5953 [16] Y. Shuai, X.Y. Guo, H.T. Wang, Z.L. Huang, Y. Yang, J.Y. Sun, J.D. Wang, Y.R. Yang, Characterization of the bubble swarm trajectory in a jet bubbling reactor, AIChE J. 65 (5) (2019) e16565 [17] Y. Shuai, X.Y. Wang, Z.L. Huang, J.Y. Sun, Y. Yang, Z.W. Liao, J.D. Wang, Y.R. Yang, Experimental measurement of bubble breakup in a jet bubbling reactor, AIChE J. 67 (1) (2021):e17062 [18] Z.L. Huang, H.T. Wang, Y. Shuai, T.Q. Guo, M. Lungu, Y. Yang, J.D. Wang, Y.R. Yang, Hydrodynamics in a jet bubbling reactor:experimental research and mathematical modeling, AIChE J. 64 (5) (2018) 1814-1827 [19] B.R. Wang, G.Q. Yang, H.Z. Tian, X.B. Li, G.D. Yang, Y.K. Shi, Z. Zhou, F. Zhang, Z.B. Zhang, A new model of bubble Sauter mean diameter in fine bubble-dominated columns, Chem. Eng. J. 393 (2020) 124673 [20] H.Z. Tian, S.F. Pi, Y.C. Feng, Z. Zhou, F. Zhang, Z.B. Zhang, One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor, Chem. Eng. J. 386 (2020) 121222 [21] Z. Zhang, H. Tian, F. Zhang, Z. Zhou, Overview of microinterface intensification in multiphase reaction systems, CIESC J., 21 (2018) 3-8. (in Chinese) [22] H. Tian, G. Yang, G. Yang, H. Luo, Z. Zhou, W. MEng, Y. Cao, L. Li, F. Zhang, J. Yang, Z. Zhang, Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor, CIESC J., 71 (2020) 4927-4935. (in Chinese) [23] G. Yang, W. Zeng, H. Luo, G. Yang, Z. Zhang, Study on the characteristics of micro-interface intensified oxidation of ammonium sulfite, CIESC J., 71 (2020) 4918-4926 [24] W. Zeng, C. Jia, H.X. Luo, G.D. Yang, G.Q. Yang, Z.B. Zhang, Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization, Ind. Eng. Chem. Res. 59 (44) (2020) 19781-19792 [25] O. Levenspiel, Chemical reaction engineering, Ind. Eng. Chem. Res. 38 (11) (1999) 4140-4143 [26] J.S. Cho, N. Wakao, Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column, J. Chem. Eng. Japan 21 (6) (1988) 576-581 [27] P.M. Wilkinson, H. Haringa, L.L. van Dierendonck, Mass transfer and bubble size in a bubble column under pressure, Chem. Eng. Sci. 49 (9) (1994) 1417-1427 [28] T.H. Zhang, Wang Danliang, Liu Yirong, He jian, Qi min, Zhang Feng, Luo Huaxun, Ding Weiping, Zhou Zheng, Intensification of interfacial mass transfer in gas-liquid reactor systems, Chem.Eng.(China), 44 (2016) 1-8 [29] B. Esmaeeli, A. Ghaemi, M. Shirvani, M. Hosseinzadeh, Mass transfer coefficient in the eductor liquid-liquid extraction column, Chin. J. Chem. Eng. 40 (2021) 27-35 [30] M. Abbasian-arani, M.S. Hatamipour, A. Rahimi, Experimental determination of gas holdup and volumetric mass transfer coefficient in a jet bubbling reactor, Chin. J. Chem. Eng. 34 (2021) 61-67 [31] S.S. Öztürk, A. Schumpe, W.D. Deckwer, Organic liquids in a bubble column:Holdups and mass transfer coefficients, AIChE J. 33 (9) (1987) 1473-1480 [32] U. Jordan, A. Schumpe, The gas density effect on mass transfer in bubble columns with organic liquids, Chem. Eng. Sci. 56 (21-22) (2001) 6267-6272 [33] K. Terasaka, H. Tsuge, Mass transfer in highly viscous liquids in a bubble column with constant-flow nozzles, J. Chem. Eng. Japan 24 (4) (1991) 424-429 [34] H. Hikita, S. Asai, K. Tanigawa, K. Segawa, M. Kitao, The volumetric liquid-phase mass transfer coefficient in bubble columns, Chem. Eng. J. 22 (1) (1981) 61-69 [35] K. Koide, A. Takazawa, M. Komura, H. Matsunaga, Gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble columns, J. Chem. Eng. Japan 17 (5) (1984) 459-466 [36] M. Zhao, K. Niranjan, J.F. Davidson, Mass transfer to viscous liquids in bubble columns and air-lift reactors:influence of baffles, Chem. Eng. Sci. 49 (14) (1994) 2359-2369 [37] Y. Niu, S. Du, L. Sheng, High-efficient crystal particle manufacture by microscale process intensification technology, GreenChE. 2(1) (2021) 59-69 [38] W.D. Deckwer, R. Burckhart, G. Zoll, Mixing and mass transfer in tall bubble columns, Chem. Eng. Sci. 29 (11) (1974) 2177-2188 [39] E. Sada, H. Kumazawa, C. Lee, N. Fujiwara, Gas-liquid mass transfer characteristics in a bubble column with suspended sparingly soluble fine particles, Ind. Eng. Chem. Process. Des. Dev. 24 (2) (1985) 255-261 [40] E. Sada, H. Kumazawa, C. Lee, T. Iguchi, Gas holdup and mass-transfer characteristics in a three-phase bubble column, Ind. Eng. Chem. Proc. Des. Dev. 25 (2) (1986) 472-476 [41] A. Mandal, G. Kundu, D. Mukherjee, Interfacial area and liquid-side volumetric mass transfer coefficient in a downflow bubble column, Can. J. Chem. Eng. 81 (2) (2008) 212-219 [42] Y. Kawase, B. Halard, M. Moo-Young, Theoretical prediction of volumetric mass transfer coefficients in bubble columns for Newtonian and non-Newtonian fluids, Chem. Eng. Sci. 42 (7) (1987) 1609-1617 [43] G. Vázquez, M.A. Cancela, C. Riverol, E. Alvarez, J.M. Navaza, Application of the Danckwerts method in a bubble column:effects of surfactants on mass transfer coefficient and interfacial area, Chem. Eng. J. 78 (1) (2000) 13-19 [44] Y. Kawase, N. Hashiguchi, Gas-liquid mass transfer in external-loop airlift columns with Newtonian and non-Newtonian fluids, Chem. Eng. J. Biochem. Eng. J. 62 (1) (1996) 35-42 [45] A.M. Jamshidi, M. Sohrabi, F. Vahabzadeh, B. Bonakdarpour, Studies on the hydrodynamic behavior and mass transfer in a down-flow jet loop reactor with a coaxial draft tube, J. Chem. Technol. Biotechnol. 76 (1) (2001) 39-46 [46] M. Velan, T.K. Ramanujam, Gas-Liquid mass transfer in a down flow jet loop reactor, Chem. Eng. Sci. 47 (9-11) (1992) 2871-2876 [47] M. Bouaifi, G. Hebrard, D. Bastoul, M. Roustan, A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns, Chem. Eng. Process. Process. Intensif. 40 (2) (2001) 97-111 [48] N. Kantarci, F. Borak, K.O. Ulgen, Bubble column reactors, Process. Biochem. 40 (7) (2005) 2263-2283 [49] M. Martín, F.J. Montes, M.A. Galán, Mass transfer from oscillating bubbles in bubble column reactors, Chem. Eng. J. 151 (1-3) (2009) 79-88 [50] P.V. Danckwerts, A.M. Kennedy, Kinetics of liquid-film process in gas absorption. Part I:models of the absorption process, Chem. Eng. Res. Des. 75 (1997) S101-S104 [51] B. Junker, Measurement of bubble and pellet size distributions:past and current image analysis technology, Bioprocess Biosyst. Eng. 29 (3) (2006) 185-206 [52] P. Yu, Z. Men, Y. Bu, X. Zhang, G. Luan, L. Weng, K. Liu, Progress in Measuring Techniques of Hydrodynamic parameters on multi-phase flow reactors, CIESC J. 64 (2013) 8-20. (in Chinese) [53] S.L. Kiambi, A.M. Duquenne, J.B. Dupont, C. Colin, F. Risso, H. Delmas, Measurements of bubble characteristics:comparison between double optical probe and imaging, Can. J. Chem. Eng. 81 (3-4) (2008) 764-770 [54] M. Liu, Y. Yang, J. Xuw, Z. Hu, Measuring Techniques for Gas-Liquid-Solid Three-phase Fluidized Bed Reactors, Chin. J. Process Eng. 5 (2005) 217-222. (in Chinese) [55] E. Delnoij, J.A.M. Kuipers, W.P.M. van Swaaij, J. Westerweel, Measurement of gas-liquid two-phase flow in bubble columns using ensemble correlation PIV, Chem. Eng. Sci. 55 (17) (2000) 3385-3395 [56] Y. Abdul Wahab, R. Abdul Rahim, M.H. Fazalul Rahiman, S. Ridzuan Aw, F.R. Mohd Yunus, C.L. Goh, H. Abdul Rahim, L.P. Ling, Non-invasive process tomography in chemical mixtures-A review, Sens. Actuat. B Chem. 210 (2015) 602-617 [57] Q. Xue, Visualized Measurement of Multiphase Pipe Flow Using γ-CT/ECT, Ph. D. Thesis, Tianjin Univ., Tianjin, 2012 [58] M.L. Bordas, A. Cartellier, P. Sechet, C. Boyer, Bubbly flow through fixed beds:Microscale experiments in the dilute regime and modeling, AIChE J. 52 (11) (2006) 3722-3743 [59] J.W.R. Boyd, J. Varley, Sound measurement as a means of gas-bubble sizing in aerated agitated tanks, AIChE J. 44 (8) (1998) 1731-1739 [60] P. Chen, M.P. Dudukovi?, J. Sanyal, Three-dimensional simulation of bubble column flows with bubble coalescence and breakup, AIChE J. 51 (3) (2005) 696-712 [61] P. Chen, J. Sanyal, M.P. Dudukovic, CFD modeling of bubble columns flows:implementation of population balance, Chem. Eng. Sci. 59 (22-23) (2004) 5201-5207 [62] B. Hu, H.M. Yang, G.F. Hewitt, Measurement of bubble size distribution using a flying optical probe technique:application in the highly turbulent region above a distillation plate, Chem. Eng. Sci. 62 (10) (2007) 2652-2662 [63] A.A. Kulkarni, J.B. Joshi, V.R. Kumar, B.D. Kulkarni, Simultaneous measurement of hold-up profiles and interfacial area using LDA in bubble columns:predictions by multiresolution analysis and comparison with experiments, Chem. Eng. Sci. 56 (21-22) (2001) 6437-6445 [64] M. Laakkonen, M. Honkanen, P. Saarenrinne, J. Aittamaa, Local bubble size distributions, gas-liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry, Chem. Eng. J. 109 (1-3) (2005) 37-47 [65] X. Xu, J.J. Wang, Q. Yang, L. Wang, H. Lu, H.L. Liu, H.L. Wang, Bubble size fractal dimension, gas holdup, and mass transfer in a bubble column with dual internals, Chin. J. Chem. Eng. 28 (12) (2020) 2968-2976 [66] S.A. Magrabi, B.Z. Dlugogorski, G.J. Jameson, Bubble size distribution and coarsening of aqueous foams, Chem. Eng. Sci. 54 (18) (1999) 4007-4022 [67] F. Möller, T. Seiler, Y.M. Lau, M. Weber, M. Weber, U. Hampel, M. Schubert, Performance comparison between different sparger plate orifice patterns:Hydrodynamic investigation using ultrafast X-ray tomography, Chem. Eng. J. 316 (2017) 857-871 [68] F. Pereira, M. Gharib, D. Dabiri, D. Modarress, Defocusing digital particle image velocimetry:a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows, Exp. Fluids 29 (1) (2000) S078-S084 [69] D. Santana, A. Macías-Machín, Local bubble-size distribution in fluidized beds, AIChE J. 46 (7) (2000) 1340-1347 [70] A.E. Sommer, M. Wagner, S.F. Reinecke, M. Bieberle, F. Barthel, U. Hampel, Analysis of activated sludge aerated by membrane and monolithic spargers with ultrafast X-ray tomography, Flow Meas. Instrum. 53 (2017) 18-27 [71] Z. Zhang, Modeling method of bubble-scale structure-effect control model for microinterface intensified reactor, CN Pat., 107563051 (2018). [72] Z. Zhang, Modeling method of structure-effect regulation model for energy dissipation in microinterface intensified reactor, CN Pat., 107589667 (2018). [73] Z. Zhang, Modeling method of microinterface intensified reactor interfacial area structure-effect control model, CN Pat., 107335390 (2017). [74] Z. Zhang, Microinterfacial Mass Transfer Intensification, Chemical Industry Press Co.,Ltd, Beijing, 2020 [75] K. Niemann, F. Wenzel, The VEBA-COMBI-CRACKING-technology:an update, Fuel Process. Technol. 35 (1-2) (1993) 1-20 [76] G. Bellussi, G. Rispoli, A. Landoni, R. Millini, D. Molinari, E. Montanari, D. Moscotti, P. Pollesel, Hydroconversion of heavy residues in slurry reactors:developments and perspectives, J. Catal. 308 (2013) 189-200 [77] T. Cyr, L. Lewkowicz, B. Ozum, R.K. Lott, L.-K. Lee, Hydrocracking process involving colloidal catalyst formed in situ, US, Pat., 5578197 (1996) [78] M. Seko, N. Ohtake, K. Kato, Y. Shohji, Super Oil Cracking (SOC) Process for Upgrading Vacuum Residues, National Petroleum Refiners Association, Washington, DC, 1988, https://www.researchgate.net/publication/236543069_Super_oil_cracking_SOC_process_for_upgrading_vacuum_residues. [79] D. Gillis, M. VanWees, P. Zimmerman, E. Houde, Upgrading residues to maximize distillate yields with UOP UniflexTM process, J. Jpn. Petrol. Inst. 53 (1) (2010) 33-41 [80] A. Delbianco, S. Meli, L. Tagliabue, N. Panariti, Eni Slurry Technology:A New Process for Heavy Oil Upgrading, 19th World Petroleum Congress, World Petroleum Congress, 2008, https://www.researchgate.net/publication/288162340_Eni_slurry_technology_A_new_process_for_heavy_oil_upgrading. |