[1] O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, New York, 1999. [2] N. Kantarci, F. Borak, K.O. Ulgen, Bubble column reactors, Process Biochem. 40(7) (2005) 2263-2283. [3] Y.T. Shah, B.G. Kelkar, S.P. Godbole, W.D. Deckwer, Design parameters estimations for bubble column reactors, AIChE J. 28(3) (1982) 353-379. [4] H.A. Jakobsen, Chemical Reactor Modeling:Multiphase Reactive Flows, SpringerVerlag, Berlin Heidelberg, 2008. [5] F.J.W. Cheng, Mathematical Modeling of Jet Bubbling Reactor, M.Sc. Thesis New Jersey Institute of Technology, USA, 1981. [6] R. Valle-Zermeño, J. Formosa, J.M. Chimenos, Wet flue gas desulfurization using alkaline agents:a review, Rev. Chem. Eng. 31(4) (2015) 303-327. [7] Y. Zheng, S. Kiil, J.E. Johnsson, Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurization, Chem. Eng. Sci. 58(20) (2003) 4695-4703. [8] B.B. Hansen, S. Kiil, J.E. Johnsson, K.B. Sonder, Foaming in wet flue gas desulfurization plants:the influence of particles, electrolytes, and buffers, Ind. Eng. Chem. Res. 47(9) (2008) 3239-3246. [9] L. Meng, C. Yang, H. Gan, T. Wu, G. Zeng, H. Chen, S. Guo, Pierced cylindrical gas inlet device for sulfur dioxide removal from waste gas streams, Sep. Purif. Technol. 63(1) (2008) 86-91. [10] J.D. Zhao, S.J. Su, N.S. Ai, X.F. Zhu, Modelling flue gas desulfurization using pyrolusite pulp in a jet bubbling reactor, Mater. Sci. Forum 610-613(2009) 85-96. [11] Z. Huang, H. Wang, Y. Shuai, T. Guo, M. Lungu, Y. Yang, J. Wang, Y. Yang, Hydrodynamics in a jet bubbling reactor:Experimental research and mathematical modeling, AIChE J. 64(2018) 1814-1827. [12] W.J. Jiang, Y. Jin, A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite, J. Environ. Sci. 17(5) (2005) 827-831. [13] H. Chen, C. Yang, H. Gan, T. Wu, G. Xie, F. Chen, H. Chen, G. Yu, Development and evaluation of a jet bubble reactor using vertical sieves in a spiral housing as a gas inlet device for dust removal and desulfurization, Huanjing Kexue Xuebao/Acta. Sci. Circum. 30(2010) 294-301. [14] M. Abbasian Arani, M.S. Hatamipour, A. Rahimi, Kinetic study of reactive SO2 absorption in a jet bubbling reactor:Experimental determination of mass transfer coefficients and absorption rate, Ind. Eng. Chem. Res. 59(2020) 8984-8994. [15] R.E. Treybal, Mass Transfer Operations, Mc-Graw Hill, New York, 1980. [16] J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals, Mc-Graw Hill, Singapore, 1976. [17] M.Y. Chisti, Airlift Bioreactors, Elsevier Applied Science, London, 1989. [18] M.L. Shuler, F. Kargi, Bioprocess Engineering:Basic Concepts, Prentice Hall PTR, New Jersey, 2002. [19] E. Sada, H. Kumazawa, Y. Yamanaka, I. Kudo, T. Kondo, Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide, J. Chem. Eng. Jpn. 11(4) (1978) 276-282. [20] G. Besagni, F. Inzoli, Bubble size distributions and shapes in annular gap bubble column, Exp. Thermal Fluid Sci. 74(2016) 27-48. [21] W.H. Zhang, X. Jiang, Y.M. Liu, A method for recognizing overlapping elliptical bubbles in bubble image, Pattern Recogn. Lett. 33(12) (2012) 1543-1548. [22] A. Ferreira, P. Cardoso, J.A. Teixeira, F. Rocha, pH influence on oxygen mass transfer coefficient in a bubble column Individual characterization of kL and a, Chem. Eng. Sci. 100(2013) 145-152. [23] R. Schäfer, C. Merten, G. Eigenberger, Bubble size distributions in a bubble column reactor under industrial conditions, Exp. Thermal Fluid Sci. 26(6-7) (2002) 595-604. [24] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems:a review, Ind. Eng. Chem. Res. 44(16) (2005) 5873-5931. [25] W.D. Deckwer, Y. Louisi, A. Zaidi, M. Ralek, Hydrodynamic properties of the FischerTropsch slurry process, Ind. Eng. Chem. Process. Des. Dev. 19(4) (1980) 699-708. [26] G.S. Grover, C.V. Rode, R.V. Chaudhari, Effect of temperature on flow regimes and gas hold-up in a bubble column, Can. J. Chem. Eng. 64(3) (1986) 501-504. [27] T.J. Lin, K. Tsuchiya, L.S. Fan, Bubble flow characteristics in bubble columns at elevated pressure and temperature, AIChE J. 44(3) (1998) 545-560. [28] R. Zou, X. Jiang, B. Li, Y. Zu, L. Zhang, Studies on gas holdup in a bubble column operated at elevated temperatures, Ind. Eng. Chem. Res. 27(10) (1988) 1910-1916. [29] K. Akita, F. Yoshida, Gas holdup and volumetric mass transfer coefficient in bubble columns:effects of liquid properties, Ind. Eng. Chem. Process. Des. Dev. 12(1973) 76-80. [30] J.S. Cho, N. Wakao, Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column, J. Chem. Eng. Jpn 21(1988) 576-581. [31] G.A. Hughmark, Holdup and mass transfer in bubble columns, Ind. Eng. Chem. Process. Des. Dev. 6(1967) 218-220. [32] R. Lau, R. Mo, W.S.B. Sim, Bubble characteristics in shallow bubble column reactors, Chem. Eng. Res. Des. 88(2010) 197-203. [33] Yellow Springs Instruments, YSI 58 Dissolved Oxygen Meter:Operations Manual., Yellow Springs Instruments, Yellow Springs, OH, YSI Incorporated, 1999. [34] R. Li, J. Luan, The influence of pH on gas-liquid mass transfer in non-Newtonian fluids, Chem. Ind. Chem. Eng. Q. 23(3) (2017) 321-327. [35] H. Jin, D. Liu, S. Yang, G. He, Z. Guo, Z.E.M.I.N. Tong, Experimental study of oxygen mass transfer coefficient in bubble column with high temperature and high pressure, Chem. Eng. Technol. 27(12) (2004) 1267-1272. [36] A. Ferreira, C. Ferreira, J.A. Teixeira, F. Rocha, Temperature and solid properties effects on gas-liquid mass transfer, Chem. Eng. J. 162(2) (2010) 743-752. [37] W.D. Deckwer, R. Burckhart, G. Zoll, Mixing and mass transfer in tall bubble columns, Chem. Eng. Sci. 29(1974) 2177-2188. [38] Engineering ToolBox, Diffusion Coefficients of Gases in Water, https://www.engineeringtoolbox.com/diffusion-coefficients-d_1404.html Mar 7, 2020. |