[1] S.A.F. Leite, B.S. Leite, D.J.O. Ferreira, B.E.L. Baeta, J.V.H. Dangelo, The effects of agitation in anaerobic biodigesters operating with substrates from swine manure and rice husk, Chem. Eng. J. 451 (2023) 138533. [2] J.Y. Dong, Y.L. Wu, X.C. Liu, C.K. Zhang, S.M. Wang, J. Wen, CFD-PBE simulation of para-xylene crystallization behavior and process amplification under different operating conditions, Ind. Eng. Chem. Res. 62 (36) (2023) 14657-14670. [3] Y.R. Wang, Q. Yang, Y.N. Du, H.Q. Chen, Evaluation of the impact of stirring on the formation, structural changes and rheological properties of ovalbumin fibrils, Food Hydrocoll. 128 (2022) 107615. [4] F. Scargiali, A. Brucato, G. Micale, A. Tamburini, On the reduction of power consumption in vortexing unbaffled bioslurry reactors, Ind. Eng. Chem. Res. 59 (16) (2020) 8037-8045. [5] G.Y. Shang, K. Cui, W.F. Cai, X.N. Hu, P.K. Jin, K. Guo, A 20 L electrochemical continuous stirred-tank reactor for high rate microbial electrosynthesis of methane from CO2, Chem. Eng. J. 451 (2023) 138898. [6] G.D. Zhang, X.Y. Shi, F. Wang, Methane hydrate production using a novel spiral-agitated reactor: Promotion of hydrate formation kinetics, AIChE. J. 68 (1) (2022) e17423. [7] E. Villermaux, Mixing versus stirring, Annu. Rev. Fluid Mech. 51 (2019) 245-273. [8] P.E. Dimotakis, Turbulent mixing, Annu. Rev. Fluid Mech. 37 (2005) 329-356. [9] L. Torrente-Murciano, J.B. Dunn, P.D. Christofides, J.D. Keasling, S.C. Glotzer, S.Y. Lee, K.M. Van Geem, J. Tom, G.H. He, The forefront of chemical engineering research, Nat. Chem. Eng. 1 (1) (2024) 18-27. [10] E.K. Nauha, O. Visuri, R. Vermasvuori, V. Alopaeus, A new simple approach for the scale-up of aerated stirred tanks, Chem. Eng. Res. Des. 95 (2015) 150-161. [11] P. Vrabel, R.G.J.M. van der Lans, K.C.A.M. Luyben, L. Boon, A.W. Nienow, Mixing in large-scale vessels stirred with multiple radial or radial and axial up-pumping impellers: modelling and measurements, Chem. Eng. Sci. 55 (23) (2000) 5881-5896. [12] M.T. Castro, J.D. Ocon, Novel designs of blade mixer impellers from the discrete element method and topology optimization, Chem. Eng. J. 490 (2024) 151863. [13] T.A. Wyrobnik, S. Oh, A. Ducci, M. Micheletti, Engineering characterization of the novel Bach impeller for bioprocessing applications requiring low power inputs, Chem. Eng. Sci. 252 (2022) 117263. [14] B. Delacroix, L. Fradette, F. Bertrand, B. Blais, Which impeller should be chosen for efficient solid-liquid mixing in the laminar and transitional regime? AIChE. J. 67 (11) (2021) e17360. [15] C. Sirasitthichoke, S. Salloum, P.M. Armenante, Power number and hydrodynamic characterization of a stirred vessel equipped with a Retreat-Blade Impeller and different types of pharmaceutical single baffles, Chem. Eng. Sci. 257 (2022) 117725. [16] T. Wang, H. Yu, R. Xiang, X.M. Chen, X. Zhang, Performance and unsteady flow characteristic of forward-curved impeller with different blade inlet swept angles in a pump as turbine, Energy 282 (2023) 128890. [17] J. Stelmach, C. Kuncewicz, T. Jirout, F. Rieger, Mixing tank hydrodynamics and mixing efficiency for propeller impellers, Chem. Eng. Res. Des. 199 (2023) 460-472. [18] X. Xiong, S.S. Wang, P.Q. Liu, C.Y. Tao, Y.D. Wang, Z.H. Liu, Numerical investigation on intensified mixing performance with modified dual impeller, Chem. Eng. Sci. 274 (2023) 118698. [19] X.Y. Tang, F.C. Qiu, P.Q. Liu, H. Li, Z.H. Liu, Revealing chaotic advection dynamics in the chaotic mixing of non-Newtonian fluids within a stirred tank employing a twisted-punched impeller, Ind. Eng. Chem. Res. 63 (32) (2024) 14259-14274. [20] J. Aubin, C. Xuereb, Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD, Chem. Eng. Sci. 61 (9) (2006) 2913-2920. [21] M. Wu, N. Jurtz, L. Hohl, M. Kraume, Multi-objective geometrical optimization of single and dual impeller stirred tanks: an application of the mean age theory approach, Chem. Eng. Res. Des. 203 (2024) 709-720. [22] J.C. Long, X.B. Zhan, F. Guo, Z.B. Sun, B.J. Shen, Y. He, X.W. Li, Study of hydrodynamics and flow characteristics in a twin-blade planetary mixer with non-Newtonian fluids, AIChE. J. 68 (10) (2022) e17797. [23] G. Ascanio, M. Brito-Bazan, E.B. La Fuente, P.J. Carreau, P.A. Tanguy, Unconventional configuration studies to improve mixing times in stirred tanks, Can. J. Chem. Eng. 80 (4) (2002) 558-565. [24] G. Ascanio, S. Foucault, M. Heniche, C. Rivera, P.A. Tanguy, Chaotic mixing in stirred vessels: a new strategy to enhance homogeneity, Ingenieria Mecanica. Tecnologia y Desarrollo. 1 (2005) 209-214. [25] H. Ameur, 3D hydrodynamics involving multiple eccentric impellers in unbaffled cylindrical tank, Chin. J. Chem. Eng. 24 (5) (2016) 572-580. [26] T. Meng, Y. Wang, S.S. Wang, S. Qin, Q. Zhang, Y.D. Wang, C.Y. Tao, Y.Q. Xu, Z.H. Liu, Exploration of multishafts stirred reactors: an investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics, Ind. Eng. Chem. Res. 63 (5) (2024) 2441-2456. [27] T. Meng, J. Yang, S.S. Wang, Y. Wang, S. Qin, Y.D. Wang, C.Y. Tao, Q. Zhang, Z.H. Liu, Multi-shaft stirred reactors mixing efficiency: Rapid characterization strategy based on chaotic attractors, AlChE. J. 70 (10) (2024) e18510. [28] H.S. Dou, Origin of Turbulence: Energy Gradient Theory. Springer Singapore, (2022). [29] P.A. Tanguy, G. Ascanio, Mixing of shear-thinning fluids with dual off-centred impellers, Can. J. Chem. Eng. 83 (3) (2005) 393-400. [30] H. Yao, J.J. Tang, Z.H. Liu, C.Y. Tao, Y.D. Wang, Chaotic mixing intensification and flow field evolution mechanism in a stirred reactor using a dual-shaft eccentric impeller, Ind. Eng. Chem. Res. 61 (26) (2022) 9498-9513. [31] S.S. Wang, H. Li, C.Y. Tao, R.L. Liu, Y.D. Wang, Z.H. Liu, Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids, Chin. J. Chem. Eng. 55 (2023) 111-122. [32] J. Aubin, D.F. Fletcher, C. Xuereb, Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme, Exp. Therm. Fluid Sci. 28 (5) (2004) 431-445. [33] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers, multiple impellers and multiphase dispersions), Can. J. Chem. Eng. 89 (4) (2011) 754-816. [34] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers, Can. J. Chem. Eng. 89 (1) (2011) 23-82. [35] Z.T. Jia, S.F. Zhang, K.F. Fang, B. Kong, M.H. Xie, Q.H. Zhang, C. Yang, Assessment of stress-blended eddy simulation on prediction of flow characteristics in a Rushton impeller stirred tank, Chem. Eng. Sci. 284 (2024) 119442. [36] O.P. Klenov, A.S. Noskov, Solid dispersion in the slurry reactor with multiple impellers, Chem. Eng. J. 176 (2011) 75-82. [37] Y.N. Yang, Y.N. Zhou, B. Ouyang, Y.Y. Wu, X.B. Zhang, Z.H. Luo, Influence of thermal runaway in styrene-acrylonitrile bulk copolymerization revealed by computational fluid dynamics modeling, AlChE. J. 68 (5) (2022) e17645. [38] Z.M. Kang, L.F. Feng, J.J. Wang, Optimization of a gas-liquid dual-impeller stirred tank based on deep learning with a small data set from CFD simulation, Ind. Eng. Chem. Res. 63 (1) (2024) 843-855. [39] R. Zadghaffari, J.S. Moghaddas, J. Revstedt, Large-eddy simulation of turbulent flow in a stirred tank driven by a Rushton turbine, Comput. Fluids 39 (7) (2010) 1183-1190. [40] N. Lamarque, B. Zoppe, O. Lebaigue, Y. Dolias, M. Bertrand, F. Ducros, Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor, Chem. Eng. Sci. 65 (15) (2010) 4307-4322. [41] B.Q. Liu, M.M. Wang, J.L. Liu, L.Y. Qian, Z.J. Jin, Experimental study on micromixing characteristics of novel large-double-blade impeller, Chem. Eng. Sci. 123 (2015) 641-647. [42] A. Line, Energy consumption to achieve macromixing revisited, Chem. Eng. Res. Des. 108 (2016) 81-87. [43] U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys. 18 (4) (1975) 376-404. [44] ANSYS Inc, ANSYS FLUENT Theory Guide Inc. release 19.2. ANSYS Academic Research, (2019). [45] J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Wea. Rev. 91 (3) (1963) 99-164. [46] A. Delafosse, J. Morchain, P. Guiraud, A. Line, Trailing vortices generated by a rushton turbine: assessment of URANS and large eddy simulations, Chem. Eng. Res. Des. 87 (4) (2009) 401-411. [47] T. Henriques, M. Ribeiro, A. Teixeira, L. Castro, L. Antunes, C. Costa-Santos, Nonlinear methods most applied to heart-rate time series: a review, Entropy 22 (3) (2020) 309. [48] N. Sarkar, B.B. Chaudhuri, An efficient differential box-counting approach to compute fractal dimension of image, IEEE Trans. Syst. Man Cybern. 24 (1) (1994) 115-120. [49] P. Grassberger, I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal, Phys. Rev. A 28 (4) (1983) 2591-2593. [50] G. Benettin, L. Galgani, J.M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14 (6) (1976) 2338-2345. [51] R. Govindarajan, K.C. Sahu, Instabilities in viscosity-stratified flow, Annu. Rev. Fluid Mech. 46 (2014) 331-353. [52] T. Meng, Y. Wang, S. Qin, P.Q. Liu, Y.D. Wang, C.Y. Tao, Z.H. Liu, Complex flow field analysis in Multi-Shaft stirred Reactors: Dynamics of Wave-Vortex coupling revealed by POD and DMD methods, Chem. Eng. Sci. 301 (2025) 120753. |