[1] G. Merli, A. Becci, A. Amato, F. Beolchini, Acetic acid bioproduction: The technological innovation change, Sci. Total Environ. 798 (2021) 149292. [2] G. Deshmukh, H. Manyar, Production pathways of acetic acid and its versatile applications in the food industry. Biotechnological Applications of Biomass. IntechOpen, (2021), pp. [3] J.L. Martin-Espejo, J. Gandara-Loe, J.A. Odriozola, T.R. Reina, L. Pastor-Perez, Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy, Sci. Total Environ. 840 (2022) 156663. [4] G.J. Sunley, D.J. Watson, High productivity methanol carbonylation catalysis using iridium The CativaTM process for the manufacture of acetic acid, Catal. Today 58 (4) (2000) 293-307. [5] T. Tsuru, T. Shibata, J.H. Wang, H.R. Lee, M. Kanezashi, T. Yoshioka, Pervaporation of acetic acid aqueous solutions by organosilica membranes, J. Membr. Sci. 421 (2012) 25-31. [6] N. Jullok, P. Luis, J. Degreve, B. Van der Bruggen, A cascaded pervaporation process for dehydration of acetic acid, Chem. Eng. Sci. 105 (2014) 208-212. [7] G.P. Liu, W.Q. Jin, Pervaporation membrane materials: Recent trends and perspectives, J. Membr. Sci. 636 (2021) 119557. [8] L.Q. Li, J.J. Li, L.J. Cheng, J.X. Wang, J.H. Yang, Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure, J. Membr. Sci. 612 (2020) 118479. [9] F.Z. Charik, B. Achiou, A. Belgada, Z.C. Elidrissi, M. Ouammou, M. Rabiller-Baudry, S.A. Younssi, Optimal preparation of low-cost and high-permeation NaA zeolite membrane for effective ethanol dehydration, Microporous Mesoporous Mater. 344 (2022) 112229. [10] K.I. Okamoto, H. Kita, K. Horii, K.T. Kondo, Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res. 40 (1) (2001) 163-175. [11] H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, K.I. Okamoto, Synthesis of a zeolite NaA membrane for pervaporation of water/organic liquid mixtures, J. Mater. Sci. Lett. 14 (3) (1995) 206-208. [12] L.Z. Li, Y. Lu, L.Q. Li, J.H. Yang, W.J. Fu, Y.W. Luo, J.M. Lu, Y. Zhang, L. Zhou, Highly selective zeolite T membranes with different ERI stacking faults for pervaporative dehydration of ethanol, J. Membr. Sci. 638 (2021) 119701. [13] J. Kuhn, K. Yajima, T. Tomita, J. Gross, F. Kapteijn, Dehydration performance of a hydrophobic DD3R zeolite membrane, J. Membr. Sci. 321 (2) (2008) 344-349. [14] X. Lin, E. Kikuchi, M. Matsukata, Preparation of mordenite membranes on α-alumina tubular supports for pervaporation of water-isopropyl alcohol mixtures, Chem. Commun. (11) (2000) 957-958. [15] Q. Wang, C. Qian, C.X. Guo, N. Xu, Q. Liu, B. Wang, L. Fan, K.H. Hu, Pervaporation dehydration mechanism and performance of high-aluminum ZSM-5 zeolite membranes for organic solvents, Int. J. Mol. Sci. 25 (14) (2024) 7723. [16] X. Lin, H. Kita, K.I. Okamoto, Silicalite membrane preparation, characterization, and separation performance, Ind. Eng. Chem. Res. 40 (19) (2001) 4069-4078. [17] Q. Liu, R.D. Noble, J.L. Falconer, H.H. Funke, Organics/water separation by pervaporation with a zeolite membrane, J. Membr. Sci. 117 (1-2) (1996) 163-174. [18] T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami, K. Haraya, Separation of ethanol/water mixture by silicalite membrane on pervaporation, J. Membr. Sci. 95 (3) (1994) 221-228. [19] Y. Cui, H. Kita, K.I. Okamoto, Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability, J. Membr. Sci. 236 (1-2) (2004) 17-27. [20] J. Jiang, L. Peng, X.R. Wang, H. Qiu, M.M. Ji, X.H. Gu, Effect of Si/Al ratio in the framework on the pervaporation properties of hollow fiber CHA zeolite membranes, Microporous Mesoporous Mater. 273 (2019) 196-202. [21] Y. Hasegawa, H. Hotta, K. Sato, T. Nagase, F. Mizukami, Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution, J. Membr. Sci. 347 (1-2) (2010) 193-196. [22] H. Qiu, J. Jiang, L. Peng, H. Liu, X.H. Gu, Choline chloride templated CHA zeolite membranes for solvents dehydration with improved acid stability, Microporous Mesoporous Mater. 284 (2019) 170-176. [23] S. Imasaka, M. Itakura, K. Yano, S. Fujita, M. Okada, Y. Hasegawa, C. Abe, S. Araki, H. Yamamoto, Rapid preparation of high-silica CHA-type zeolite membranes and their separation properties, Sep. Purif. Technol. 199 (2018) 298-303. [24] H.L. Hong, K.L. Yu, H.B. Liu, R.F. Zhou, W.H. Xing, Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation, Adv. Membr. 4 (2024) 100096. [25] Z.G. Xue, Y. Shen, L. Chen, B. Liu, N. Hu, R.F. Zhou, W.H. Xing, High-performance 19-channel monolithic chabazite membranes for efficient separation of water/ethanol and water/isopropanol mixtures by pervaporation and vapor permeation, J. Membr. Sci. 713 (2025) 123353. [26] B. Liu, R. Zhang, Y. Du, F. Gao, J.J. Zhou, R.F. Zhou, Highly selective high-silica SSZ-13 zeolite membranes for H2 production from syngas, Int. J. Hydrog. Energy 45 (32) (2020) 16210-16218. [27] L. Yu, M.S. Nobandegani, A. Holmgren, J. Hedlund, Highly permeable and selective tubular zeolite CHA membranes, J. Membr. Sci. 588 (2019) 117224. [28] D. Korelskiy, T. Leppajarvi, H. Zhou, M. Grahn, J. Tanskanen, J. Hedlund, High flux MFI membranes for pervaporation, J. Membr. Sci. 427 (2013) 381-389. [29] M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2-4) (2005) 281-287. [30] X.Q. Mo, H.B. Liu, Y.L. Li, Q.L. Gu, B. Wang, R.F. Zhou, W.H. Xing, SSZ-13 membranes on novel silica carbide monoliths for efficient CO2 separation, J. Membr. Sci. 699 (2024) 122642. [31] J.J. Zhou, S.J. Wu, B. Liu, R.F. Zhou, W.H. Xing, Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture, Sep. Purif. Technol. 293 (2022) 121122. [32] Y.M. Li, Y.L. Wang, M.Y. Guo, B. Liu, R.F. Zhou, Z.P. Lai, High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations, J. Membr. Sci. 629 (2021) 119277. [33] S. Kobuchi, K. Takakura, S. Yonezawa, K. Fukuchi, Y. Arai, Correlation of vapor-liquid equilibria of binary systems containing carboxylic acid by using Wilson equation with parameters estimated from pure-component properties, J. Chem. Eng. Japan / JCEJ 46 (2) (2013) 100-106. [34] D.H. Olson, M.A. Camblor, L.A. Villaescusa, G.H. Kuehl, Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58, Microporous Mesoporous Mater. 67 (1) (2004) 27-33. [35] N.N. Wang, N. Liu, J.J. Zhou, Q. Wang, N. Hu, R.F. Zhou, Large-area, high-permeance and acid-resistant zeolite SSZ-13 membranes for efficient pervaporative separation of water/acetic acid mixtures, J. Membr. Sci. 691 (2024) 122251. [36] Y.T. Zhang, X.F. Zhu, S.Z. Chen, J.Y. Liu, Z. Hong, J.C. Wang, Z. Li, X.C. Gao, R. Xu, X.H. Gu, TiO2-decorated NaA zeolite membranes with improved separation stability for pervaporation dehydration of N, N-Dimethylacetamide, J. Membr. Sci. 634 (2021) 119398. [37] Y.T. Zhang, S.Z. Chen, R. Shi, P. Du, X.F. Qiu, X.H. Gu, Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane, Sep. Purif. Technol. 204 (2018) 234-242. [38] R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data, J. Membr. Sci. 348 (1-2) (2010) 346-352. [39] J.H. Chen, J.Z. Zheng, Q.L. Liu, H.X. Guo, W. Weng, S.X. Li, Pervaporation dehydration of acetic acid using polyelectrolytes complex (PEC)/11-phosphotungstic acid hydrate (PW11) hybrid membrane (PEC/PW11), J. Membr. Sci. 429 (2013) 206-213. [40] Y.Q. Li, M.H. Zhu, N. Hu, F. Zhang, T. Wu, X.S. Chen, H. Kita, Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures, J. Membr. Sci. 564 (2018) 174-183. [41] T. Nagase, Y. Kiyozumi, Y. Hasegawa, T. Inoue, T. Ikeda, F. Mizukami, Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes, Chem. Lett. 36 (5) (2007) 594-595. [42] K. Xu, Z.Q. Jiang, B. Feng, A.S. Huang, A graphene oxide layer as an acid-resisting barrier deposited on a zeolite LTA membrane for dehydration of acetic acid, RSC Adv. 6 (28) (2016) 23354-23359. [43] D.Y. Si, M.H. Zhu, X.M. Sun, M. Xue, Y.Q. Li, T. Wu, T. Gui, I. Kumakiri, X.S. Chen, H. Kita, Formation process and pervaporation of high aluminum ZSM-5 zeolite membrane with fluoride-containing and organic template-free gel, Sep. Purif. Technol. 257 (2021) 117963. [44] M.H. Zhu, I. Kumakiri, K. Tanaka, H. Kita, Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane, Microporous Mesoporous Mater. 181 (2013) 47-53. [45] R. Yao, Y. Peng, H.L. Song, C.Y. Zhu, P.Y. Wang, L. Kun, W.S. Yang, Rational design and fabrication of a novel acid-resistant UZM-5 zeolite membrane for pervaporation dehydration processes, Chem. Commun. 57 (75) (2021) 9574-9577. |