[1] J. Ananda, Explaining the environmental efficiency of drinking water and wastewater utilities, Sustain. Prod. Consum. 17 (2019) 188-195. [2] F.H. Li, C.Y. Zhao, H.L. Fan, M.L. Xu, Q.Q. Guo, Y. Li, L.S. Wu, T. Wang, Y.T. Fang, Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition, Energy 251 (2022) 123912. [3] L. Batistella, V. Silva, R.C. Suzin, E. Virmond, C.A. Althoff, R.F.P.M. Moreira, H.J. Jose, Gaseous emissions from sewage sludge combustion in a moving bed combustor, Waste Manag. 46 (2015) 430-439. [4] J.T. Feng, I.T. Burke, X.H. Chen, D.I. Stewart, Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk, Rev. Environ. Sci. Bio/Technol. 22 (4) (2023) 1037-1058. [5] H. Liu, G.J. Hu, I.A. Basar, J.B. Li, N. Lyczko, A. Nzihou, C. Eskicioglu, Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: a review towards sustainable waste management, Chem. Eng. J. 417 (2021) 129300. [6] A.M. Zaharioiu, F. Bucura, R.E. Ionete, F. Marin, M. Constantinescu, S. Oancea, Opportunities regarding the use of technologies of energy recovery from sewage sludge, SN Appl. Sci. 3 (9) (2021) 775. [7] T.P. Vo, R.C. Zhang, J. Rintala, K.K. Xiao, C. He, Effect of thermochemical treatment of sewage sludge on its phosphorus leaching efficiency: Insights into leaching behavior and mechanism, Waste Manag. 190 (2024) 24-34. [8] Y.J. Du, T.R. Shi, S.G. Guo, H.G. Li, Y.H. Qin, Y.F. Wang, C. He, Y.X. Wei, Unraveling the intrinsic mechanism behind the retention of arsenic in the co-gasification of coal and sewage sludge: Focus on the role of Ca and Fe compounds, J. Hazard. Mater. 470 (2024) 134211. [9] M.M. Ma, S.Y. Zhang, Y.N. Chen, B. Chen, L.J. Guo, Optimization of hydrogen-rich syngas from coal and sewage sludge co-gasification in supercritical water, Chem. Eng. J. 497 (2024) 154792. [10] D. Schwitalla, M. Reinmoller, C. Forman, C. Wolfersdorf, M. Gootz, J. Bai, S. Guhl, M. Neuroth, B. Meyer, Ash and slag properties for co-gasification of sewage sludge and coal: an experimentally validated modeling approach, Fuel Process. Technol. 175 (2018) 1-9. [11] C.L. Wu, Y. Xin, X. Liu, H.X. Li, F.C. Jiao, Synergistic effect of CaO and MgO addition on coal ash fusibility in a reducing atmosphere, Asia Pac. J. Chem. Eng. 14 (4) (2019) e2324. [12] C. He, J. Bai, A. Ilyushechkin, H.L. Zhao, L.X. Kong, H.Z. Li, Z.Q. Bai, Z.X. Guo, W. Li, Effect of chemical composition on the fusion behaviour of synthetic high-iron coal ash, Fuel 253 (2019) 1465-1472. [13] W. Zhao, L.M. Zhang, X.D. Song, Y.C. Li, C.Y. Zhao, J.T. Wei, Y.H. Bai, P. Lv, W.G. Su, G.S. Yu, Effect of residual carbon on the flow properties of iron-containing coal ash: Ash fusibility and viscosity-temperature characteristics, Fuel 374 (2024) 132467. [14] Q. Zhang, H.F. Liu, Y.P. Qian, M.H. Xu, W.F. Li, J.L. Xu, The influence of phosphorus on ash fusion temperature of sludge and coal, Fuel Process. Technol. 110 (2013) 218-226. [15] H. Wu, X. Liu, X. Cao, Q.H. Guo, G.S. Yu, Effects of phosphorus on the fusion characteristics of synthetic ashes with different Al2O3/CaO ratios, Fuel 361 (2024) 130698. [16] X.X. Zhang, H.Y. Dou, J. Bai, L.X. Kong, W. Feng, H.Z. Li, Z.X. Guo, Z.Q. Bai, P. Li, W. Li, Effect of phosphorus on viscosity-temperature behavior of high-sodium coal ash slag, Fuel 343 (2023) 127930. [17] H. Wu, X. Cao, Q.H. Guo, X. Liu, G.S. Yu, Effects of phosphorus pentoxide on viscosity-temperature characteristics of sewage sludge ash slags under mild reducing atmosphere, Fuel 376 (2024) 132763. [18] C. He, Y.J. Du, X.R. Cai, J.R. Wang, Y.H. Qin, Z.B. Zhao, H.Z. Li, S.V. Vassilev, C.G. Vassileva, In-situ analysis of the sintering behavior of coal ash and a phosphorus-rich biomass ash under gasification condition, Biomass Bioenergy 168 (2023) 106671. [19] X.X. Zhang, J. Bai, S.V. Vassilev, L.X. Kong, L. Huang, H.Z. Li, Z.Q. Bai, P. Li, W. Li, Effect of phosphorus-based additives on ash fusion characteristics of high-sodium coal under gasification condition, Fuel 317 (2022) 123472. [20] J.G. Shao, D.H. Lee, R. Yan, M. Liu, X.L. Wang, D.T. Liang, T.J. White, H.P. Chen, Agglomeration characteristics of sludge combustion in a bench-scale fluidized bed combustor, Energy Fuels 21 (5) (2007) 2608-2614. [21] J. Bedia, V.M. Monsalvo, J.J. Rodriguez, A.F. Mohedano, Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO, Chem. Eng. J. 318 (2017) 224-230. [22] Y.L. Zhang, Y.L. Shi, B. Yan, F.P. Zhang, S.T. Wang, C.C. Fan, L. Chen, X.L. Xu, X.H. Guo, A novel iron-based composite flocculant for enhanced wastewater treatment and upcycling hazardous sludge into trifunctional electrocatalyst, Appl. Surf. Sci. 569 (2021) 151034. [23] F.H. Li, H.L. Fan, X.C. Wang, T. Wang, Y.T. Fang, Influences of phosphorus on ash fusion characteristics of coal and its regulation mechanism, Fuel 239 (2019) 1338-1350. [24] Y.P. Yu, Z.A. Yu, W. Xu, K.B. Zhang, Y.N. Tang, G.J. Cheng, X. He, B.Q. Dai, High-temperature ash melting and fluidity behavior upon the cocombustion of sewage sludge and coal, ACS Omega 9 (12) (2024) 14455-14464. [25] H. Wu, J.J. Wang, X. Liu, X. Cao, Q.H. Guo, G.S. Yu, Effects of phosphorous-based additive on flow properties of high silicon-aluminum coal ash, Fuel 328 (2022) 125238. [26] M. Li, F.H. Li, Q.R. Liu, Y.T. Fang, H.X. Xiao, Regulation of ash fusibility for high ash-fusion-temperature (AFT) coal by industrial sludge addition, Fuel 244 (2019) 91-103. [27] S.V. Vassilev, D. Baxter, C.G. Vassileva, An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types, Fuel 117 (2014) 152-183. [28] H.L. Liang, J.H. Yi, Y. Yang, L. Zhang, T. Ma, W.B. Chen, H. Liu, D.F. Che, Study on the mechanism of multiple sodium salts co-loading on ash fusibility and mineral evolution behaviors, Fuel 397 (2025) 135397. [29] Z.Q. Yang, F.H. Li, M.J. Ma, W. Zhao, X.F. Liu, Y. Wang, Z.Z. Li, Y.T. Fang, Effecting mechanisms of iron-rich sludge on ash fusion characteristics of coal with high ash fusion temperature under reducing atmosphere, Waste Manag. 174 (2024) 328-339. [30] X. Cao, Z.F. Ge, X. Liu, H. Wu, G.S. Yu, Comprehensive analysis on the in situ ash fusibility and mineral reactions of ash mixtures in the co-gasification process, Fuel Process. Technol. 241 (2023) 107589. [31] H.X. Li, J.Y. Xiong, Y.X. Tang, X. Cao, Mineralogy study of the effect of iron-bearing minerals on coal ash slagging during a high-temperature reducing atmosphere, Energy Fuels 29 (11) (2015) 6948-6955. [32] Y.J. Wei, H.X. Li, N. Yamada, A. Sato, Y. Ninomiya, K. Honma, T. Tanosaki, A microscopic study of the precipitation of metallic iron in slag from iron-rich coal during high temperature gasification, Fuel 103 (2013) 101-110. [33] Z.J. Shen, Q.F. Liang, B.B. Zhang, J.L. Xu, H.F. Liu, Effect of continuous cooling on the crystallization process and crystal compositions of iron-rich coal slag, Energy Fuels 29 (6) (2015) 3640-3648. [34] L.X. Kong, J. Bai, Z.Q. Bai, Z.X. Guo, W. Li, Effects of CaCO3 on slag flow properties at high temperatures, Fuel 109 (2013) 76-85. [35] X.X. Zhang, L. Huang, X.W. Bai, W. Feng, J. Bai, L.X. Kong, Z.Q. Bai, M. Zhong, Z.H. Dai, W. Li, The effect of sewage sludge on Zhundong coal ash melting behavior under different atmosphere, Mater. Chem. Phys. 333 (2025) 130396. |