[1] Y. Zhou, R.Y. Li, Z.X. Lv, J. Liu, H.J. Zhou, C.M. Xu, Green hydrogen: a promising way to the carbon-free society, Chin. J. Chem. Eng. 43 (2022) 2-13. [2] S. Niaz, T. Manzoor, A.H. Pandith, Hydrogen storage: materials, methods and perspectives, Renew. Sustain. Energy Rev. 50 (2015) 457-469. [3] S. Sorrell, Reducing energy demand: a review of issues, challenges and approaches, Renew. Sustain. Energy Rev. 47 (2015) 74-82. [4] M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U. Rahman Farooqi, C. Lee, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change, Int. J. Hydrogen Energy 47 (77) (2022) 33112-33134. [5] A. Yagmur Goren, I. Dincer, A. Khalvati, A comprehensive review on environmental and economic impacts of hydrogen production from traditional and cleaner resources, J. Environ. Chem. Eng. 11 (6) (2023) 111187. [6] S. Latreche, N. Boutarek-Zaourar, I. Bencherifa, F. Messaoud, M. Trari, Electrochemical performance of NiAl-activated cathode for green hydrogen production, Chin. J. Chem. Eng. 75 (2024) 290-298. [7] B. Wang, R. Xiao, H.Y. Zhang, An overview of bio-oil upgrading with high hydrogen-containing feedstocks to produce transportation fuels: chemistry, catalysts, and engineering, Curr. Org. Chem. 23 (7) (2019) 746-767. [8] H. Aki, I. Sugimoto, T. Sugai, M. Toda, M. Kobayashi, M. Ishida, Optimal operation of a photovoltaic generation-powered hydrogen production system at a hydrogen refueling station, Int. J. Hydrogen Energy 43 (32) (2018) 14892-14904. [9] C.Y. Li, S.W. Chu, C.Y. Ho, H.J. Chang, T.J. Wan, A comprehensive review of critical factors affecting green ammonia synthesis by electrochemical process, J. Environ. Chem. Eng. 12 (6) (2024) 114454. [10] P.E. Dodds, I. Staffell, A.D. Hawkes, F. Li, P. Grunewald, W. McDowall, P. Ekins, Hydrogen and fuel cell technologies for heating: a review, Int. J. Hydrogen Energy 40 (5) (2015) 2065-2083. [11] Y. Wan, Z.M. Zhou, Z.M. Cheng, Hydrogen production from steam reforming of methanol over CuO/ZnO/Al2O3 catalysts: catalytic performance and kinetic modeling, Chin. J. Chem. Eng. 24 (9) (2016) 1186-1194. [12] F. Li, D. Liu, K. Sun, S.H. Yang, F.Z. Peng, K.X. Zhang, G.D. Guo, Y. Si, Towards a future hydrogen supply chain: a review of technologies and challenges, Sustainability 16 (5) (2024) 1890. [13] M.T. Dunstan, F. Donat, A.H. Bork, C.P. Grey, C.R. Muller, CO2 capture at medium to high temperature using solid oxide-based sorbents: fundamental aspects, mechanistic insights, and recent advances, Chem. Rev. 121 (20) (2021) 12681-12745. [14] Y.X. Gong, J.S. Yao, P. Wang, Z.X. Li, H.J. Zhou, C.M. Xu,Perspective of hydrogen energy and recent progress in electrocatalytic water splitting, Chin. J. Chem. Eng. 43(2022) 282-296. [15] Z.L. Wang, C.W. Wu, X.L. Wang, M.Z. Xie, Y.F. Li, Z.H. Zhan, Y. Shuai, Ultra-durable solar-driven seawater electrolysis for sustainable hydrogen production, Adv. Funct. Mater. 35 (9) (2025) 2416014. [16] A. Hosseinzadeh, J.L. Zhou, X.W. Li, M. Afsari, A. Altaee, Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource, Renew. Sustain. Energy Rev. 156 (2022) 111991. [17] P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting, Nature 613 (7942) (2023) 66-70. [18] J.L. Wang, Y.N. Yin, Fermentative hydrogen production using various biomass-based materials as feedstock, Renew. Sustain. Energy Rev. 92 (2018) 284-306. [19] N. Muradov, Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives, Int. J. Hydrogen Energy 42 (20) (2017) 14058-14088. [20] A. Midilli, H. Kucuk, M.E. Topal, U. Akbulut, I. Dincer, A comprehensive review on hydrogen production from coal gasification: challenges and opportunities, Int. J. Hydrogen Energy 46 (50) (2021) 25385-25412. [21] M. Ayesha, A.H. Khoja, F.A. Butt, U. Sikandar, A.H. Javed, S.R. Naqvi, I.U. Din, M.T. Mehran, Sorption enhanced steam reforming of methane over waste-derived CaO promoted MgNiAl hydrotalcite catalyst for sustainable H2 production, J. Environ. Chem. Eng. 10 (3) (2022) 107651. [22] E. Peralta-Reyes, D. Vizarretea-Vasquez, R. Natividad, A. Aizpuru, E. Robles-Gomez, C. Alanis, A. Regalado-Mendez, Electrochemical reforming of glycerol into hydrogen in a batch-stirred electrochemical tank reactor equipped with stainless steel electrodes: parametric optimization, total operating cost, and life cycle assessment, J. Environ. Chem. Eng. 10 (4) (2022) 108108. [23] K.K. Moses, A. Aliyu, A. Hamza, I.A. Mohammed-Dabo, Recycling of waste lubricating oil: a review of the recycling technologies with a focus on catalytic cracking, techno-economic and life cycle assessments, J. Environ. Chem. Eng. 11 (6) (2023) 111273. [24] J.S. Qu, J.B. Zhang, H.Q. Li, S.P. Li, D. Shi, R.Q. Chang, W.F. Wu, G.Y. Zhu, C.N. Yang, C.Y. Wang, Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag, Chin. J. Chem. Eng. 58 (2023) 11-19. [25] H. Ishaq, C. Crawford, Towards less carbon-intensive blue hydrogen: integrated natural gas reforming and CO2 capture approach, J. Environ. Chem. Eng. 13 (2) (2025) 115043. [26] S.K. Dash, S. Chakraborty, D. Elangovan, A brief review of hydrogen production methods and their challenges, Energies 16 (3) (2023) 1141. [27] M. Voldsund, K. Jordal, R. Anantharaman, Hydrogen production with CO2 capture, Int. J. Hydrogen Energy 41 (9) (2016) 4969-4992. [28] S. Manigandan, J.I. Ryu, T.R. Praveen Kumar, M. Elgendi, Hydrogen and ammonia as a primary fuel-A critical review of production technologies, diesel engine applications, and challenges, Fuel 352 (2023) 129100. [29] L.S. Wang, Z.D. Du, J. Feng, X.L. Shi, W.Y. Li, Thermal coupling study during the co-processing of coal and biomass in the lab-scale adiabatic reactor, Chin. J. Chem. Eng. 78 (2025) 303-313. [30] M. Mujtaba, L. Fernandes Fraceto, M. Fazeli, S. Mukherjee, S.M. Savassa, G. Araujo de Medeiros, A. do Espirito Santo Pereira, S.D. Mancini, J. Lipponen, F. Vilaplana, Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics, J. Clean. Prod. 402 (2023) 136815. [31] A. Capa, Y.L. Yan, F. Rubiera, C. Pevida, M.V. Gil, P.T. Clough, Process simulations of high-purity and renewable clean H2 production by sorption enhanced steam reforming of biogas, ACS Sustainable Chem. Eng. 11 (12) (2023) 4759-4775. [32] H. Zhu, Y. Wang, X.L. Zheng, P. Li, Y.Y. Zhu, X.B. Li, Sol-gel auto-combustion synthesis of bimetallic Pt-Co/Al2O3 catalysts for hydrogen production via acetic acid steam reforming, J. Environ. Chem. Eng. 12 (3) (2024) 112758. [33] M. Cortazar, S.Z. Sun, C.F. Wu, L. Santamaria, L. Olazar, E. Fernandez, M. Artetxe, G. Lopez, M. Olazar, Sorption enhanced ethanol steam reforming on a bifunctional Ni/CaO catalyst for H2 production, J. Environ. Chem. Eng. 9 (6) (2021) 106725. [34] D.D. Zhou, Y.X. Wang, Z.C. Zhang, Y.T. Zhang, A.M. Li, J.D. Luan, G.Z. Ji, Vacuum assisted desorption of sodium zirconate sorbent for enhancing cyclic stability in pre-combustion CO2 capture, Carbon Capture Sci. Technol. 13 (2024) 100277. [35] P. Suriya, S.S. Xu, S.Z. Ding, S. Chansai, Y.L. Jiao, J. Hurd, D. Lee, Y.X. Zhang, C. Hardacre, P. Reubroycharoen, X.L. Fan, Ethanol steam reforming over Ni/ZSM-5 nanosheet for hydrogen production, Chin. J. Chem. Eng. 67 (2024) 247-256. [36] D.D. Zhou, Y.X. Wang, M.Z. Memon, W. Fu, Z.Q. Wu, S.J. Sheng, H.M. Zhang, G.Z. Ji, The effect of Na2ZrO3 synthesis method on the CO2 sorption kinetics at high temperature, Carbon Capture Sci. Technol. 3 (2022) 100050. [37] Y.S. Wang, N. Li, M.Q. Chen, D.F. Liang, C. Li, Q. Liu, Z.L. Yang, J. Wang, Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation, Chin. J. Chem. Eng. 48 (2022) 176-190. [38] H.M. Sun, J.Q. Wang, J.H. Zhao, B.X. Shen, J. Shi, J. Huang, C.F. Wu, Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion, Appl. Catal. B Environ. 244 (2019) 63-75. [39] J. Saupsor, S. Wongsakulphasatch, P. Kim-Lohsoontorn, P. Bumroongsakulsawat, W. Kiatkittipong, S. Ratchahat, S. Charojrochkul, J.L. Gong, S. Assabumrungrat, Fe2O3/CaO-Al2O3 multifunctional catalyst for hydrogen production by sorption-enhanced chemical looping reforming of ethanol, Biomass Convers. Biorefin. 13 (10) (2023) 8651-8668. [40] C. Quan, M.C. Wang, N.B. Gao, T.H. Yang, R.D. Li, In situ adsorption of CO2 to enhance biomass gasification for hydrogen production using Ca/Ni based composites, J. Energy Inst. 108 (2023) 101229. [41] J.Y. Wang, P.F. Wu, Y.L. Wei, Q.F. Zhao, P. Ning, Y.M. Huang, S.K. Wen, J.Y. Xu, Q. Wang, Study of calcium-based CO2 sorbent with high cycling stability derived from steel slag and its anti-sintering mechanism, J. CO2 Util. 66 (2022) 102279. [42] S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, X.J. Chen, Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag, Environ. Sci. Technol. 49 (12) (2015) 7464-7472. [43] B.X. Zhang, Y.M. Chen, B.K. Kang, J.F. Qian, X. Chuai, R.F. Peng, Z.P. Li, F.Q. Guo, W.J. Yan, J.Y. Zhang, Hydrogen production via steam reforming of coke oven gas enhanced by steel slag-derived CaO, Int. J. Hydrogen Energy 45 (24) (2020) 13231-13244. [44] S.C. Tian, K.M. Li, J.G. Jiang, X.J. Chen, F. Yan, CO2 abatement from the iron and steel industry using a combined Ca-Fe chemical loop, Appl. Energy 170 (2016) 345-352. [45] Y.X. Wang, H. Zhou, D.D. Yao, G. Olguin, H.X. Ding, B.Y. Qu, W.S. Xie, Z.G. Fu, Y. Guo, X. Wang, A.M. Li, G.Z. Ji, Ni-CaO-CaZrO3 bi-functional materials for high purity hydrogen production via sorption enhanced steam reforming of ethanol, J. Clean. Prod. 446 (2024) 141397. [46] S. Ibrahim, B.H. Hameed, F.A. Almomani, Review on recent progress in post-combustion carbon dioxide capture using carbonaceous and non-carbonaceous materials in fixed-bed adsorption column, J. Environ. Chem. Eng. 13 (1) (2025) 114952. [47] C.S. Martavaltzi, A.A. Lemonidou, Parametric study of the CaO-Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation, Ind. Eng. Chem. Res. 47 (23) (2008) 9537-9543. [48] M. Zhao, J. Shi, X. Zhong, S.C. Tian, J. Blamey, J.G. Jiang, P.S. Fennell, A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture, Energy Environ. Sci. 7 (10) (2014) 3291-3295. [49] M.A. Carreon, V.V. Guliants, Ordered meso- and macroporous binary and mixed metal oxides, Eur. J. Inorg. Chem. 2005 (1) (2005) 27-43. [50] I. Zamboni, C. Courson, A. Kiennemann, Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming, Appl. Catal. B Environ. 203 (2017) 154-165. [51] F.J. Wang, S.Y. Chen, S.B. Chen, P.X. Yuan, L.B. Duan, W.G. Xiang, CO2 capture and H2 production performance of calcium-based sorbent doped with iron and cerium during calcium looping cycle, process. Saf. Environ. Prot. 188 (2024) 1175-1190. [52] S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, X.J. Chen, V. Manovic, Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry, Green Chem. 18 (14) (2016) 4022-4031. [53] C.Y. Ding, X.W. Lv, G. Li, C.G. Bai, S.W. Xuan, K. Tang, X.M. Lv, Isothermal reduction of powdery 2CaO·Fe2O3 and CaO·Fe2O3 under H2 atmosphere, Int. J. Hydrogen Energy 43 (1) (2018) 24-36. [54] H.X. Guo, X.C. Kou, Y.J. Zhao, S.P. Wang, Q. Sun, X.B. Ma, Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy, Chem. Eng. J. 334 (2018) 237-246. [55] M. Zhao, X. He, G.Z. Ji, Y.Q. Song, X. Zhao, Zirconia incorporated calcium looping absorbents with superior sintering resistance for carbon dioxide capture from in situ or ex situ processes, Sustain. Energy Fuels 2 (12) (2018) 2733-2741. [56] M. Zhao, Y.Q. Song, G.Z. Ji, X. Zhao, Demonstration of polymorphic spacing strategy against sintering: synthesis of stabilized calcium looping absorbents for high-temperature CO2 sorption, Energy Fuels 32 (4) (2018) 5443-5452. [57] S. Teir, S. Eloneva, C.J. Fogelholm, R. Zevenhoven, Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production, Energy 32 (4) (2007) 528-539. [58] Q.X. Lu, K. Wu, Z.T. Zha, Y.N. Ma, Z.F. Ge, H.Y. Zhang, A review on potential applications of Fe/Ni/Ca in biomass catalytic reforming to produce hydrogen, Fuel 365 (2024) 131158. [59] J.T. Chen, J.X. Wang, H.W. Jiang, X.L. Zuo, X. Yang, Effects of over-sintering on cyclic calcination and carbonization of natural limestone for CO2 capture, Processes 12 (9) (2024) 1926. |