[1] M.S. Karimi, M.J. Oboodi, Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows, Heat Mass Transf. 55 (2) (2019) 547-569. [2] M. Natali, J.M. Kenny, L. Torre, Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review, Prog. Mater. Sci. 84 (2016) 192-275. [3] J.F. Shi, N. Li, F. Zhang, Z. Zong, Z.Y. Li, Y.Y. Wang, D.X. Yan, Enhanced mechanical property, high-temperature oxidation and ablation resistance of carbon fiber/phenolic composites reinforced by attapulgite, Compos. Part A Appl. Sci. Manuf. 187 (2024) 108469. [4] F. Wang, Y.H. Wang, W. Peng, J.Q. Ji, J.Y. Liu, P. Xiao, Y. Wang, Independent component analysis enhanced pulse thermography for high silicon oxygen phenolic resin (HSOPR) sheet with subsurface defects, Infrared Phys. Technol. 92 (2018) 345-349. [5] C. Sharada Prabhakar, P. Ramesh Babu, Characterization of mechanical and thermal properties of high strength glass epoxy and rayon carbon phenolic composites, Mater. Today Proc. 5 (13) (2018) 26898-26903. [6] J. Lachaud, I. Cozmuta, N.N. Mansour, Multiscale approach to ablation modeling of phenolic impregnated carbon ablators, J. Spacecr. Rockets 47 (6) (2010) 910-921. [7] R. Jambunathan, A. Borner, J. Ferguson, F. Panerai, D.A. Levin, Prediction of thermal protection system material permeability and tortuosity factor using Direct Simulation Monte Carlo2018 AIAA Aerospace Sciences Meeting. 8-12 January 2018, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 0497. [8] F. Torres-Herrador, J. Coheur, F. Panerai, T.E. Magin, M. Arnst, N.N. Mansour, J. Blondeau, Competitive kinetic model for the pyrolysis of the phenolic impregnated carbon ablator, Aerosp. Sci. Technol. 100 (2020) 105784. [9] X.Y. Jin, C. Liu, H. Huang, R.Q. Pan, C. Wu, X.J. Yan, H.B. Wang, Y.W. Pan, C.Q. Hong, X.H. Zhang, Multiscale, elastic, and low-density carbon fibre/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection, Compos. Part B Eng. 245 (2022) 110212. [10] J.B.E. Meurisse, G.B. Chatzigeorgis, P.V. Diaz, B.K. Bessire, F. Panerai, N.N. Mansour, Equilibrium model for the ablation response of silicone-coated PICA, Int. J. Heat Mass Transf. 201 (2023) 123523. [11] M. Natali, I. Puri, J.M. Kenny, L. Torre, M. Rallini, Microstructure and ablation behavior of an affordable and reliable nanostructured Phenolic Impregnated Carbon Ablator (PICA), Polym. Degrad. Stab. 141 (2017) 84-96. [12] J.J. Gao, D.Y. Deng, H.T. Han, J.J. Yu, Microstructure evolution and multiscale heat transfer characteristics of resin-based ablative material under aerodynamic heating, Int. J. Aerosp. Eng. 2023 (1) (2023) 9069416. [13] W.D. Song, X.F. Jia, C. Ma, J.T. Wang, W.M. Qiao, L.C. Ling, Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification, Compos. Commun. 31 (2022) 101119. [14] M. Gasch, M. Stackpoole, S. White, T. Boghozian, Development of Advanced Conformal Ablative TPS Fabricated from Rayon- and Pan-Based Carbon Felts57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 4-8 January 2016, San Diego, California, USA. Reston, Virginia: AIAA, 2016: 1414. [15] B. Niu, H.C. Shen, T. Li, H.Y. Zhang, Z. Qian, Y. Cao, Y.Y. Zhang, D.H. Long, 2.5D quartz fabric reinforced nanoporous phenolic composites with weakened heat transfer and optimized mechanical properties, Compos. Sci. Technol. 230 (2022) 109726. [16] Z. Qian, H.X. Cai, J.X. Cao, P. Wang, L. Li, Y. Cao, Y.Y. Zhang, B. Niu, D.H. Long, 3D needle-punched carbon/quartz fabric reinforced nanoporous phenolic composites with co-optimized mechanics, insulation and ablation, Compos. Commun. 36 (2022) 101393. [17] S. Li, Y. Han, F.H. Chen, Z.H. Luo, H. Li, T. Zhao, The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin, Polym. Degrad. Stab. 124 (2016) 68-76. [18] L. Zhang, Y.H. Zhang, L. Wang, Y.L. Yao, J.T. Wu, Y. Sun, M.F. Tian, J. Liu, Phenolic resin modified by boron-silicon with high char yield, Polym. Test. 73 (2019) 208-213. [19] R.Y. Yin, H.M. Cheng, C.Q. Hong, X.H. Zhang, Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties, Compos. Part A Appl. Sci. Manuf. 101 (2017) 500-510. [20] S. Li, F.H. Chen, B.X. Zhang, Z.H. Luo, H. Li, T. Zhao, Structure and improved thermal stability of phenolic resin containing silicon and boron elements, Polym. Degrad. Stab. 133 (2016) 321-329. [21] M. Mehdikhani, L. Gorbatikh, I. Verpoest, S.V. Lomov, Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance, J. Compos. Mater. 53 (12) (2019) 1579-1669. [22] Y. Kaneda, R. Inoue, Y. Kogo, Fabrication procedure for porous carbon material with three dimensionally networked structure. Proceeding of the 42nd International Conference on Advanced Ceramics and Composites. John Wiley & Sons, Inc., (2019), pp 7-86. [23] H.X. Cai, Z. Qian, L. Li, Y.Y. Zhang, B. Niu, D.H. Long, Tensile behaviors of nanoporous phenolic composites reinforced by 3D needle-punched preforms with different weave patterns, Compos. Commun. 43 (2023) 101700. [24] F. Awaja, B. Arhatari, K. Wiesauer, E. Leiss, D. Stifter, An investigation of the accelerated thermal degradation of different epoxy resin composites using X-ray microcomputed tomography and optical coherence tomography, Polym. Degrad. Stab. 94 (10) (2009) 1814-1824. [25] H.Y. Weng, S.C.C. Bailey, A. Martin, Numerical study of iso-Q sample geometric effects on charring ablative materials, Int. J. Heat Mass Transf. 80 (2015) 570-596. [26] Tom van Eekelen, Jean R. Lachaud, Santa Cruz, Alexandre Martin, Ioana Cozmuta Ablation Test-Case Series #3. Numerical Simulation of Ablative-Material Response: Code and Model Comparisons 2012, https://uknowledge.uky.edu/me_facpub/20. [27] P. Reynier, Survey of convective blockage for planetary entries, Acta Astronaut. 83 (2013) 175-195. [28] B.L. Xu, Z. Jing, X. Liu, Z.W. Shao, Y.J. Guo, L. Zeng, B. Dai, G.F. Ji, N.N. Ge, A comparative theoretical and experimental investigation on thermal parameters and initial pyrolysis mechanism of methyl-phenyl-dimethoxy silane modified phenolic resin, Polym. Degrad. Stab. 218 (2023) 110596. [29] H.H. Fang, H.J. Xu, S.X. Sang, S.Q. Liu, S.L. Song, H.H. Liu, 3D reconstruction of coal pore network and its application in CO2-ECBM process simulation at laboratory scale, Front. Earth Sci. 16 (2) (2022) 523-539. [30] T.G. Baychev, A.P. Jivkov, A. Rabbani, A.Q. Raeini, Q.R. Xiong, T. Lowe, P.J. Withers, Reliability of algorithms interpreting topological and geometric properties of porous media for pore network modelling, Transp. Porous Medium. 128 (1) (2019) 271-301. [31] J. Zhang, G.D. Ma, R.P. Ming, X.Z. Cui, L. Li, H.N. Xu, Numerical study on seepage flow in pervious concrete based on 3D CT imaging, Constr. Build. Mater. 161 (2018) 468-478. [32] X.M. Ni, J. Miao, R.S. Lv, X.Y. Lin, Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology, Fuel 200 (2017) 199-207. [33] F. Yu, D.Q. Sun, M.J. Hu, J. Wang, Study on the pores characteristics and permeability simulation of pervious concrete based on 2D/3D CT images, Constr. Build. Mater. 200 (2019) 687-702. [34] A. Borner, F. Panerai, N.N. Mansour, High temperature permeability of fibrous materials using direct simulation Monte Carlo, Int. J. Heat Mass Transf. 106 (2017) 1318-1326. [35] R. Jambunathan, D.A. Levin, A. Borner, J.C. Ferguson, F. Panerai, Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo, Int. J. Heat Mass Transf. 130 (2019) 923-937. |