[1] C.E. Lin, J. Wang, M.Y. Zhou, B.K. Zhu, L.P. Zhu, C.J. Gao, Poly(m-phenylene isophthalamide) (PMIA):A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes, J. Membr. Sci. 518(2016) 72-78. [2] F. Liu, N.A. Hashim, Y.T. Liu, M.R.Moghareh. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375(2011) 1-27. [3] Y. Wei, H.Q. Chu, B.Z. Dong, X. Li, S.J. Xia, Z.M. Qiang, Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance, Desalination 272(2011) 90-97. [4] X. Zhang, Y. Wang, Y.T. You, H. Meng, J.H. Zhang, X.X. Xu, Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes, Appl. Surf. Sci. 263(2012) 660-665. [5] L. Shao, Z.X. Wang, Y.L. Zhang, Z.X. Jiang, Y.Y. Liu, A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate, J. Membr. Sci. 461(2014) 10-21. [6] C. Chen, L. Tang, B.C. Liu, X. Zhang, J. Crittenden, K.L. Chen, Y.S. Chen, Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux, J. Membr. Sci. 487(2015) 1-11. [7] X.F. Fang, J.S. Li, X. Li, S.L. Pan, X.Y. Sun, J.Y. Shen, W.Q. Han, L.J. Wang, B. Van der Bruggen, Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance, J. Colloid Interface Sci. 505(2017) 642-652. [8] S. Liang, K. Xiao, Y.H. Mo, X. Huang, A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling, J. Membr. Sci. 394(2012) 184-192. [9] M. Ben-Sasson, K.R. Zodrow, G.G. Qi, Y. Kang, E.P. Giannelis, M. Elimelech, Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties, Environ. Sci. Technol. 48(2014) 384-393. [10] L.X. Dong, H.W. Yang, S.T. Liu, X.M. Wang, Y.F.F. Xie, Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes, Desalination 365(2015) 70-78. [11] J. Mansouri, S. Harrisson, V. Chen, Strategies for controlling biofouling in membrane filtration systems:challenges and opportunities, J. Mater. Chem. 20(2010) 4567-4586. [12] X. Sun, Q.L. Wu, X. Zhan, J. Wu, S.Y. Wei, Z.H. Guo, Advanced titania nanostructures and composites for lithium ion battery, J. Membr. Sci. 47(2011) 2519-2534. [13] Y. Liu, H.B. Jin, S.M. Zhu, Y.C. Liu, M.C. Long, Y.F. Zhou, D.Y. Yan, A facile method for fabricating TiO2@mesoporous carbon and three-layered nanocomposites, Nanotechnology 23(2012) 32. [14] R.A. Damodar, S.J. You, H.H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, J. Hazard. Mater. 172(2009) 1321-1328. [15] J.H. Li, Y.Y. Xu, L.P. Zhu, J.H. Wang, C.H. Du, Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance, J. Membr. Sci. 326(2009) 659-666. [16] Y.T. Xiao, S.S. Xu, Y.C. Du, F.Q. Shiang, Progress of novel TiO2 photocatalytic separation membrane, J. Inorg. Mater. 26(2011) 337-346. [17] H. Shi, Y. He, Y. Pan, H.H. Di, G.Y. Zeng, L. Zhang, C.L. Zhang, A modified musselinspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation, J. Membr. Sci. 506(2016) 60-70. [18] Y.L. Liu, K.L. Ai, L.H. Lu, Polydopamine and its derivative materials:synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev. 114(2014) 5057-5115. [19] J.L. Shen, Q. Zhang, Q. Yin, Z.L. Cui, W.X. Li, W.H. Xing, Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property, J. Membr. Sci. 521(2017) 95-103. [20] J.H. Jiang, P.B. Zhang, L.P. Zhu, B.K. Zhu, Y.Y. Xu, Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP, J. Mater. Chem. B 3(2015) 7698-7706. [21] C.A. Smolders, A.J. Reuvers, I.M. Wienk, Microstructures in phase-inversion membranes.Part 1. Formation of macrovoids, J. Membr. Sci. 79(1992) 259-275. [22] T.H. Young, L.W. Chen, Pore formation mechanism of membranes from phase inversion process, Desalination 103(1995) 233-247. [23] Z.L. Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropolymers for membranes, Prog. Polym. Sci. 39(2014) 164-198. [24] D.R. Dillon, K.K. Tenneti, C.Y. Li, F.K. Ko, On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites, Polymer 47(2006) 1678-1688. [25] M.T. Darestani, H.G.L. Coster, T.C. Chilcott, S. Fleming, V. Nagarajan, H. An, Piezoelectric membranes for separation processes:Fabrication and piezoelectric properties, J. Membr. Sci. 434(2013) 184-192. [26] Z.L. Cui, N.T. Hassankiadeh, Y.B. Zhuang, E. Drioli, Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes, Prog. Polym. Sci. 51(2015) 94-126. [27] Y. Wu, S.L. Hsu, C. Honeker, D.J. Bravet, D.S. Williams, The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride), J. Phys. Chem. B 116(2012) 7379-7388. [28] P. Martins, C.M. Costa, J.C.C. Ferreira, S. Lanceros-Mendez, Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites, J. Phys. Chem. B 116(2012) 794-801. [29] G.X. Tan, K.Y. Ouyang, L. Zhou, Y. Liu, J.D. Fan, W.P. Li, L. Zhang, C.Y. Ning, The mechanism of pH-induced polydopamine films surface protonation and cell adhesion behavior, Sci. Sin. Chim. 46(2016) 373-381. |