[1] Y. Mu, P.T. Williams, Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review, Chemosphere 308 (2022) 136481. [2] T. Zhang, G. Li, Y. Yu, Y. Ji, T. An, Atmospheric diffusion profiles and health risks of typical VOC: Numerical modelling study, J. Clean. Prod. 275 (2020) 122982. [3] C.T. Yang, G. Miao, Y.H. Pi, Q.B. Xia, J.L. Wu, Z. Li, J. Xiao, Abatement of various types of VOCs by adsorption/catalytic oxidation: A review, Chem. Eng. J. 370 (2019) 1128–1153. [4] L. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater. 389 (2020) 122102. [5] L. Cheng, W. Wei, C. Zhang, X. Xu, K. Sha, Q. Meng, Y. Jiang, S. Cheng, Quantitation study on VOC emissions and their reduction potential for coking industry in China: Based on in situ measurements on treated and untreated plants, Sci. Total Environ. 836 (2022) 155466. [6] F. Şahin, B. Topuz, H. Kalıpçılar, ZIF filled PDMS mixed matrix membranes for separation of solvent vapors from nitrogen, J. Membr. Sci. 598 (2020) 117792. [7] Z.J. Guo, Z.Y. Liu, K. Zhang, W.W. Wang, J. Pang, Z.G. Li, Z.X. Kang, D.F. Zhao, Stable metal–organic frameworks based mixed matrix membranes for ethylbenzene/N2 separation, Chem. Eng. J. 416 (2021) 129193. [8] C. Zhang, X. Gao, J.C. Qin, Q.K. Guo, H.L. Zhou, W.Q. Jin, Microporous polyimide VOC-rejective membrane for the separation of nitrogen/VOC mixture, J. Hazard. Mater. 402 (2021) 123817. [9] B. Shen, S. Zhao, X. Yang, M. Carta, H. Zhou, W. Jin, Relation between permeate pressure and operational parameters in VOC/nitrogen separation by a PDMS composite membrane, Sep. Purif. Technol. 280 (2022) 119974. [10] F. Gérardin, A. Cloteaux, J. Simard, É. Favre, A photodriven energy efficient membrane process for trace VOC removal from air: First step to a smart approach, Chem. Eng. J. 419 (2021) 129566. [11] Y.Y. Choi, J.H. Kim, K.W. Chun, Evaluating the possibility of utilizing hollow fiber membranes for recovering VOC generated by oil tankers, J. Mar. Eng. Technol. 20 (4) (2021) 278–287. [12] J.S. Lee, P. Chandra, S.K. Burgess, R. Kriegel, W.J. Koros, An advanced gas/vapor permeation system for barrier materials: Design and applications to poly(ethylene terephthalate), J. Polym. Sci. B Polym. Phys. 50 (17) (2012) 1262–1270. [13] W.J. Zhu, X.H. Shen, R. Ou, M. Murugesan, A.H. Yuan, J.F. Liu, X.C. Hu, Z. Yang, M. Shen, F. Yang, Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent, Chin. J. Chem. Eng. 46 (2022) 194–206. [14] W. Jin, G. Liu, N. Xu, Polymer/ceramic composite membranes. Organic–Inorganic Composite Membranes for Molecular Separation, World Scientific (Europe), London, 2017, pp. 18–79. [15] W. Yang, H. Zhou, C. Zong, Y. Li, W. Jin, Study on membrane performance in vapor permeation of VOC/N2 mixtures via modified constant volume/variable pressure method, Sep. Purif. Technol. 200 (2018) 273–283. [16] A. Khakpour, M. Gibbons, S. Chandra, Effect of moisture condensation on vapour transmission through porous membranes, J. Ind. Text. 51 (2 Suppl) (2022) 1931S–1951S. [17] A. Kujawska, K. Knozowska, J. Kujawa, W. Kujawski, Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes, Sep. Purif. Technol. 159 (2016) 68–80. [18] C. Du, J.R. Du, X. Feng, J. Wang, Green extraction of perilla volatile organic compounds by pervaporation, Sep. Purif. Technol. 261 (2021) 118281. [19] C.L. Zhao, F. Han, Y.N. Li, B.N. Mao, J. Kang, C.Y. Shen, X.Y. Dong, Volatile organic compound sensor based on PDMS coated Fabry–Perot interferometer with vernier effect, IEEE Sens. J. 19 (12) (2019) 4443–4450. [20] H. Uchiyama, M. Dowaki, K. Kadota, H. Arima, K. Sugiyama, Y. Tozuka, Single-stranded β-1, 3-1, 6-glucan as a carrier for improved dissolution and membrane permeation of poorly water-soluble compounds, Carbohydr. Polym. 247 (2020) 116698. [21] X.C. Han, L.Y. Chen, Y. Wang, T.J. Wang, F.C. Cui, Z.H. Jiang, J.H. Pang, Novel polymers with ultrapermeability based on alternately planar and contorted units for gas separation, ACS Mater. Lett. 4 (1) (2022) 61–67. [22] A. Khosravi, M. Sadeghi, H.Z. Banadkohi, M.M. Talakesh, Polyurethane-silica nanocomposite membranes for separation of propane/methane and ethane/methane, Ind. Eng. Chem. Res. 53 (5) (2014) 2011–2021. [23] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science 356 (6343) (2017) eaab0530. [24] C. Zong, X. Yang, D. Chen, Y. Chen, H. Zhou, W. Jin, Rational tuning of the viscosity of membrane solution for the preparation of sub-micron thick PDMS composite membrane for pervaporation of ethanol–water solution, Sep. Purif. Technol. 255 (2021) 117729. [25] D.S. Laoretani, R.J. Sánchez, D. Alexander Figueroa Paredes, O. Alberto Iribarren, J. Espinosa, On the conceptual modeling, economic analysis and life cycle assessment of partial dealcoholization alternatives of bitter extracts, Sep. Purif. Technol. 251 (2020) 117331. [26] N.A. Artsiusheuski, A.L. Grachev, B.A. Kolozhvari, D.A. Fedosov, Pervaporation of water–alcohol mixtures on cation-exchanged LTA zeolite membranes, Pet. Chem. 59 (8) (2019) 880–886. [27] S. Van der Perre, T. Van Assche, B. Bozbiyik, J. Lannoeye, D.E. De Vos, G.V. Baron, J.F.M. Denayer, Adsorptive characterization of the ZIF-68 metal–organic framework: A complex structure with amphiphilic properties, Langmuir 30 (28) (2014) 8416–8424. [28] R. Petrychkovych, K. Setnickova, P. Uchytil, The influence of water on butanol isomers pervaporation transport through polyethylene membrane, Sep. Purif. Technol. 107 (2013) 85–90. [29] C.Y. Zuo, J. Hindley, X.B. Ding, M. Gronnow, W.H. Xing, X.B. Ke, Transmission of butanol isomers in pervaporation based on series resistance model, J. Membr. Sci. 638 (2021) 119702. [30] A. Wakisaka, K. Matsuura, M. Uranaga, T. Sekimoto, M. Takahashi, Azeotropy of alcohol–water mixtures from the viewpoint of cluster-level structures, J. Mol. Liq. 160 (2) (2011) 103–108. [31] H. Zhou, R. Shi, W. Jin, Novel organic–inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution, Sep. Purif. Technol. 127 (2014) 61–69. [32] Z. Qu, J.M. Huang, G.L. Wu, L.L. Dong, C.F. Zhang, Y.X. Bai, Tailor-made iron–organic molecular cage embedded polydimethylsiloxane membranes via emulsion casting technique for efficient VOCs removal, J. Appl. Polym. Sci. 139 (41) (2022) e53004. [33] L. Yu, M. Grahn, P.C. Ye, J. Hedlund, Ultra-thin MFI membranes for olefin/nitrogen separation, J. Membr. Sci. 524 (2017) 428–435. [34] S. Dai, R. Liao, H. Zhou, W. Jin, Synthesis of triptycene-based linear polyamide membrane for molecular sieving of N2 from the VOC mixture, Sep. Purif. Technol. 252 (2020) 117355. [35] E. Dumont, A. Couvert, A. Amrane, C. Couriol, G. Darracq, P. Le Cloirec, Equivalent absorption capacity (EAC) concept applied to the absorption of hydrophobic VOCs in a water/PDMS mixture, Chem. Eng. J. 287 (2016) 205–216. [36] M. Hosseini Anvari, P. Choi, Effect of confinement on the adsorption behavior of inorganic and organic ions at aqueous-cyclohexane interfaces: A molecular dynamics study, Phys. Chem. Chem. Phys. 21 (37) (2019) 20770–20781. [37] M. Cen, J.F. Fan, D.Y. Liu, X.Z. Song, J. Liu, W.Q. Zhou, H.M. Xiao, Cyclo-hexa-peptides at the water/cyclohexane interface: A molecular dynamics simulation, J .Mol. Model. 19 (2) (2013) 601–611. [38] J.Y. Xu, Y. Lyu, J.K. Zhuo, Y.S. Xu, Z.J. Zhou, Q. Yao, Formation and emission characteristics of VOCs from a coal-fired power plant, Chin. J. Chem. Eng. 35 (2021) 256–264. [39] F. Yang, W.H. Li, R. Ou, Y.T. Lu, X.X. Dong, W.L. Tu, W.J. Zhu, X.Y. Wang, L.L. Li, A.H. Yuan, J.M. Pan, Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property, Chin. J. Chem. Eng. 47 (2022) 120–133. [40] S.S. Wang, L.L. Huang, Y.M. Zhang, L.C. Li, X.H. Lu, A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects, Chin. J. Chem. Eng. 31 (2021) 153–163. |