[1] X.C. Lan, T.F.Wang, Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review, ACS Catal. 10 (4) (2020) 2764–2790. [2] Y. Lv, M.M. Han, W.B. Gong, D.D. Wang, C. Chen, G.Z. Wang, H.M. Zhang, H.J. Zhao, Fe-Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water, Angewandte Chemie Int. Ed. 59 (52) (2020) 23521–23526. [3] T. Yuan, D.R. Liu, Y. Pan, X.Q. Pu, Y.D. Xia, J.B. Wang, W. Xiong, Magnetic anchored CoPt bimetallic nanoparticles as selective hydrogenation catalyst for cinnamaldehyde, Catal Lett 149 (3) (2019) 851–859. [4] H.S. Lan, Z.Z. Qin, S.L. Shi, X.C. Zhang, X.H. He, H.B. Ji, Fe2O3 supported Pt single atom catalysts for the selective hydrogenation of cinnamaldehyde, Dalton Trans. 51 (40) (2022) 15227–15232. [5] J.Y. Yu, L. Yan, G.M. Tu, C.H. Xu, X.R. Ye, Y.J. Zhong, W.D. Zhu, Q. Xiao, Magnetically responsive core-shell Pd/Fe3O4@C composite catalysts for the hydrogenation of cinnamaldehyde, Catal Lett 144 (12) (2014) 2065–2070. [6] Q.L. Liu, Q. Liu, Y.R. Chen, Y.L. Li, S. Hui, Q.H. Liu, G.Q. Li, Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α, β-unsaturated aldehyde, Chin. Chem. Lett. 33 (1) (2022) 374–377. [7] B. Dragoi, I. Mazilu, A. Chirieac, C. Ciotonea, A. Ungureanu, E. Marceau, E. Dumitriu, S. Royer, Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: Toward the design of active hydrogenation catalysts, Catal. Sci. Technol. 7 (22) (2017) 5376–5385. [8] Y.F. Zheng, J.H. Liang, Y.Y. Chen, Z.J. Liu, Economical and green synthesis of Cu nanowires and their use as a catalyst for selective hydrogenation of cinnamaldehyde, RSC Adv. 4 (78) (2014) 41683–41689. [9] F.P. Tian, M.J. Zhang, X.C. Zhang, X. Chen, J.L. Wang, Y.F. Zhang, C.G. Meng, C.H. Liang, Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde, J Mater Sci 57 (5) (2022) 3168–3182. [10] P. Liu, Y.L. Zhu, L. Zhou, W.H. Zhang, Y.X. Li, Amorphous nickel phosphide nanoparticles for selective hydrogenation of cinnamaldehyde, Catal. Lett.150 (9) (2020) 2695–2702. [11] B.W. Li, H.C. Zeng, Formation combined with intercalation of Ni and its alloy nanoparticles within mesoporous silica for robust catalytic reactions, ACS Appl. Mater. Interfaces 10 (35) (2018) 29435–29447. [12] X.F. Wang, X.H. Liang, P. Geng, Q.B.Li, Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts, ACS Catal. 10 (4) (2020) 2395–2412. [13] T.M. Bustamante, M.A. Fraga, J.L.G. Fierro, C.H. Campos, G.Pecchi, Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde, Catal. Today 356 (2020) 330–338. [14] J.F. Su, W. Shi, X.C. Liu, L.Y. Zhang, S.B. Cheng, Y. Zhang, G.A. Botton, B.S.Zhang, Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde, J. Catal. 388 (2020) 164–170. [15] Z.J. Wei, X.M. Zhu, X.S. Liu, H.Q. Xu, X.H. Li, Y.X. Hou, Y.X.Liu, Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol, Chin. J. Chem. Eng. 27 (2) (2019) 369–378. [16] S.J. Li, Y.F. Fan, C.H. Wu, C.F. Zhuang, Y. Wang, X.M. Li, J. Zhao, Z.F.Zheng, Selective hydrogenation of furfural over the Co-based catalyst: A subtle synergy with Ni and Zn dopants, ACS Appl. Mater. Interfaces 13 (7) (2021) 8507–8517. [17] Y.J. Liu, D.H. Zhang, X.C. Li, S.J. Deng, D. Zhao, N. Zhang, C.Chen, Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral, Appl. Surf. Sci. 505 (2020) 144387. [18] P.B. Jiang, X.L. Li, W.B. Gao, X. Wang, Y. Tang, K. Lan, B. Wang, R.Li, Highly selective hydrogenation of α, β-unsaturated carbonyl compounds over supported Co nanoparticles, Catal. Commun. 111 (2018) 6–9. [19] C. Ciotonea, A. Chirieac, B. Dragoi, J. Dhainaut, M. Marinova, S. Pronier, S. Arii-Clacens, J.P. Dacquin, E. Dumitriu, A. Ungureanu, S.Royer, Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation, Appl. Catal. A Gen. 623 (2021) 118303. [20] K. Shen, X.D. Chen, J.Y. Chen, Y.W.Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis, ACS Catal. 6 (9) (2016) 5887–5903. [21] J. Chen, L.D. Li, L. Yang, C. Chen, S.T. Wang, Y. Huang, D.P.Cao, A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application, Chin. J. Chem. Eng. 43 (2022) 161–168. [22] Y.Z. Chen, C.M. Wang, Z.Y. Wu, Y.J. Xiong, Q. Xu, S.H. Yu, H.L. Jiang, From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis, Adv. Mater. 27 (34) (2015) 5010–5016. [23] X.R. Yan, L.L. Chen, H.X. Song, Z.H. Gao, H.S. Wei, W.Z. Ren, W.H.Wang, Metal-organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes, New J. Chem. 45 (39) (2021) 18268–18276. [24] W. Zhong, H.L. Liu, C.H. Bai, S.J. Liao, Y.W.Li, Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts, ACS Catal. 5 (3) (2015) 1850–1856. [25] C.H. Bai, A.Q. Li, X.F. Yao, H.L. Liu, Y.W. Li, Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts, Green Chem. 18 (4) (2016) 1061–1069. [26] H.Y. Niu, S.L. Liu, Y.Q. Cai, F.C. Wu, X.L. Zhao, MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst, Microporous Mesoporous Mater. 219 (2016) 48–53. [27] Z.F. Li, Y. Shen, Q. Zhang, T.L. Hu Budget MOF-derived catalyst to realize full conversion from furfural to furfuryl alcohol, Mol. Catal. 518 (2022) 112092. [28] Y. Li, Y.X. Zhou, X. Ma, H.L. Jiang, A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds, Chem. Commun. 52 (22) (2016) 4199–4202. [29] V.P. Santos, T.A. Wezendonk, J.J. Delgado Jaén, A.I. Dugulan, M.A. Nasalevich, H.U. Islam, A. Chojecki, S. Sartipi, X.H. Sun, A.A. Hakeem, A.C.J. Koeken, M. Ruitenbeek, T. Davidian, G.R. Meima, G. Sankar, F. Kapteijn, M. Makkee, J. Gascon, Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts, Nat. Commun. 6 (2015) 6451. [30] L.L. Zhang, X. Chen, Z.J. Peng, C.H.Liang, Chemoselective hydrogenation of cinnamaldehyde over MOFs-derived M2Si@C (M = Fe, Co, Ni) silicides catalysts, Mol. Catal. 449 (2018) 14–24. [31] Y.P. Su, C. Chen, X.G. Zhu, Y. Zhang, W.B. Gong, H.M. Zhang, H.J. Zhao, G.Z. Wang, Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol, Dalton Trans. 46 (19) (2017) 6358–6365. [32] O.M. Yaghi, H.L. Li, T.L.Groy, Construction of porous solids from hydrogen-bonded metal complexes of 1, 3, 5-benzenetricarboxylic acid, J. Am. Chem. Soc. 118 (38) (1996) 9096–9101. [33] Yan, Jiang, Enhanced performance of well-dispersed Co species incorporated on porous carbon derived from metal-organic frameworks in 1, 3-butadiene hydrogenation, Microporous Mesoporous Mater. 288 (2019) 109557. [34] Shuang, Lin, Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution, Microporous Mesoporous Mater. 193 (2014) 27–34. [35] L.D. Ji, Y.S. Jin, K.B. Wu, C.D. Wan, N.J. Yang, Y.Tang, Morphology-dependent electrochemical sensing performance of metal (Ni, Co, Zn)-organic frameworks, Anal. Chimica Acta 1031 (2018) 60–66. [36] J.M. Liu, C.B. Wang, H.M. Sun, H. Wang, F.L. Rong, L.H. He, Y.F. Lou, S. Zhang, Z.H. Zhang, M.Du, CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery, Appl. Catal. B Environ. 279 (2020) 119407. [37] Zubair, Hasan, Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks, Chem. Eng. J. 298 (2016) 183–190. [38] D.P. Xue, H.C. Xia, W.F. Yan, J.N. Zhang, S.C. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction, Nano Micro Lett.13 (1) (2020) 1–23. [39] R.F. Xie, G.L. Fan, Q. Ma, L. Yang, F. Li, Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor, J. Mater. Chem. A 2 (21) (2014) 7880–7889. [40] J.M. Yan, X.B. Zhang, H. Shioyama, Q. Xu, Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles, J. Power Sources 195 (4) (2010) 1091–1094. [41] J. Yu, Y.H. Ni, M.H. Zhai, Highly selective non-enzyme glucose detection based on Co-CoO-Co3O4 nanocomposites prepared via a solution-combustion and subsequent heat-treating route, J. Alloys Compd. 723 (2017) 904–911. [42] X. Zhang, R.R. Liu, Y.P. Zang, G.Q. Liu, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Co/CoO nanoparticles immobilized on Co-N-doped carbon as trifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions, Chem. Commun. 52 (35) (2016) 5946–5949. [43] J. Bai, B.J. Xi, H.Z. Mao, Y. Lin, X.J. Ma, J.K. Feng, S.L. Xiong, One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage, Adv. Mater. 30 (35) (2018) 1802310. [44] Z. Cao, J.H. Bu, Z.Q. Zhong, C.Y. Sun, Q.S. Zhang, J.D. Wang, S.H. Chen, X.W.Xie, Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature, Appl. Catal. A Gen. 578 (2019) 105–115. [45] Rong, Zhang, The role of surface NH groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts, Appl. Surf. Sci. 492 (2019) 736–745. [46] B. Zhang, X.B. Zhang, L.Y. Xu, Y.J. Zhang, Y.H. Qin, C.F. Liang, Selective hydrogenation of cinnamaldehyde over ZSM-5 supported Co catalysts, Reac Kinet Mech Cat 110 (1) (2013) 207–214. [47] X.B. Zhang, Y.J. Zhang, F. Chen, Y.Z. Xiang, B. Zhang, L.Y. Xu, T.R. Zhang, Efficient selective hydrogenation of cinnamaldehyde over zeolite supported cobalt catalysts in water, Reac Kinet Mech Cat 115 (1) (2015) 283–292. [48] L.L. Zhang, X. Chen, C. Li, M. Armbrüster, Z.J. Peng, C.H. Liang, Cobalt silicides nanoparticles embedded in N-doped carbon as highly efficient catalyst in selective hydrogenation of cinnamaldehyde, ChemistrySelect 3 (6) (2018) 1658–1666. [49] S.H. Zhou, H.S.Qi, A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co3O4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation, Nanoscale 12 (33) (2020) 17373–17384. [50] K.J. A. Raj,M.G. Prakash, T. Elangovan, B. Viswanathan, Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania, Catal Lett 142 (1) (2012) 87–94. [51] J.J. Zhao, V. Malgras, J. Na, R. Liang, Y. Cai, Y.Q. Kang, A. Ali Alshehri, K.A. Alzahrani, Y.G. Alghamdi, T. Asahi, D.Q. Zhang, B. Jiang, H.X. Li, Y.Yamauchi, Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol, Chem. Eng. J. 398 (2020) 125564. [52] G.H. Wang, X.H. Deng, D. Gu, K. Chen, H. Tüysüz, B. Spliethoff, H.J. Bongard, C. Weidenthaler, W. Schmidt, F. Schüth, Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of α, β-unsaturated aldehydes, Angewandte Chemie 128 (37) (2016) 11267–11271. [53] X.M. Liu, S.J. Cheng, J.L. Long, W. Zhang, X.H. Liu, D.P. Wei, MOFs-Derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α, β-unsaturated aldehydes without use of base additives, Mater. Chem. Front. 1 (10) (2017) 2005–2012. [54] H.J. Wang, B.Y. Liu, F. Liu, Y.N. Wang, X.C. Lan, S.Q. Wang, B. Ali, T.F.Wang, Transfer hydrogenation of cinnamaldehyde catalyzed by Al2O3 using ethanol as a solvent and hydrogen donor, ACS Sustainable Chem. Eng. 8 (22) (2020) 8195–8205. |