[1] J. D. Seader, Ernest J. Henley, D. Keith Roper, Separation Process Principles with Applications Using Process Simulators, John Wiley & Sons, New York (2016). [2] R, Krishna, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52 (6) (1997) 861–911. [3] R. Krishnamurthy, R. Taylor, A nonequilibrium stage model of multicomponent separation processes. Part I: Model description and method of solution, AIChE J. 31 (3) (1985) 449–456. [4] R. Taylor, H.A. Kooijman, J.S.Hung, A second generation nonequilibrium model for computer simulation of multicomponent separation processes, Comput. Chem. Eng. 18 (3) (1994) 205–217. [5] R. Krishnamurthy, R. Taylor, A nonequilibrium stage model of multicomponent separation processes. Part II: comparison with experiment, AIChE J. 31 (3) (1985) 456–465. [6] H.A. Kooijman, R.Taylor, Modelling mass transfer in multicomponent distillation, Chem. Eng. J. Biochem. Eng. J. 57 (2) (1995) 177–188. [7] R. Taylor, R. Krishna, H.A. Kooijman, Reactions and separations: real-world modeling of distillation, Chem. Eng. Prog. 99 (7) (2003) 28, 38. [8] J. Zhou, H. A. Kooijman, R. Taylor, A rate-based equation-oriented parallel column model: application to dividing wall columns, Chem. Eng. Res. Des. 146 (2019) 48–59. [9] B. Wang, R. Zhou, L. Yu, L. Qiu, X. Zhi, X. Zhang, Evaluation of mass transfer correlations applying to cryogenic distillation process with non-equilibrium model, Cryogenics 97 (2019) 22–30. [10] M. Klöker, E.Y. Kenig, A. Hoffmann, P. Kreis, A.Górak, Rate-based modelling and simulation of reactive separations in gas/vapour-liquid systems, Chem. Eng. Process. Process. Intensif. 44 (6) (2005) 617–629. [11] I. Mueller, E.Y.Kenig, Reactive distillation in a dividing wall column: rate-based modeling and simulation, Ind. Eng. Chem. Res. 46 (11) (2007) 3709–3719. [12] A. Hoffmann, C. Noeres, A.Górak, Scale-up of reactive distillation columns with catalytic packings, Chem. Eng. Process. Process. Intensif. 43 (3) (2004) 383–395. [13] D.A. Liñán, D.E. Bernal, J.M. Gómez, L.A.Ricardez-Sandoval, Optimal synthesis and design of catalytic distillation columns: a rate-based modeling approach, Chem. Eng. Sci. 231 (2021) 116294. [14] M.F. Powers, D.J. Vickeryt, A. Arehole, R.Taylor, A nonequilibrium stage model of multicomponent separation processes—V. Computational methods for solving the model equations, Comput. Chem. Eng. 12 (12) (1988) 1229–1241. [15] T.L. Wayburn, J.D.Seader, Homotopy continuation methods for computer-aided process design, Comput. Chem. Eng. 11 (1) (1987) 7–25. [16] A.P. Higler, R. Taylor, R.Krishna, Nonequilibrium modelling of reactive distillation: multiple steady states in MTBE synthesis, Chem. Eng. Sci. 54 (10) (1999) 1389–1395. [17] R.C. Pattison, M.Baldea, Equation-oriented flowsheet simulation and optimization using pseudo-transient models, AIChE J. 60 (12) (2014) 4104–4123. [18] Y.J. Ma, Y.Q. Luo, X.G.Yuan, Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model, Ind. Eng. Chem. Res. 56 (21) (2017) 6266–6274. [19] D.L. Bennett, R. Agrawal, P.J.Cook, New pressure drop correlation for sieve tray distillation columns, AIChE J. 29 (3) (1983) 434–442. [20] Kangyi, Li, Equation-oriented optimization of reaction distillation column considering tray hydraulics, Sep. Purif. Technol. 295 (2022) 121229. [21] R.S. Huss, F.R. Chen, M.F. Malone, M.F.Doherty, Reactive distillation for methyl acetate production, Comput. Chem. Eng. 27 (12) (2003) 1855–1866. [22] R. Krishnamurthy, R. Taylor, A nonequilibrium stage model of multicomponent separation processes. Part III: the influence of unequal component-efficiencies in process design problems, AIChE J. 31 (12) (1985) 1973–1985. |