1 Hasegawa, T., Tanaka, R., Niioka, T., “Combustion with high temperature low oxygen air in regenerative burners”, In:The first Asia-Pacific Conference on Combustion, Osaka, Japan, 290-293 (1997). 2 Yasuda, T., Ueno, C., “Dissemination project of industrial furnace revamped with HTAC”, In:The Second International Seminar on High Temperature Combustion in Industrial Furnace, Stockholm, Sweden, 1-7 (2000). 3 Yang, W., Blasiak, W., “Combustion performance and numerical simulation of a high temperature air-LPG flame on a regenerative burner”, Scand. J. Metal., 33 (2), 113-120 (2004). 4 Katsuki, M., Hasegawa, T., “The science and technology of combustion in highly preheated air”, Proc. Combust. Inst., 27 (2), 3135-3146 (1998). 5 Dally, B.B., Karpetis, A.N., Barlow, R.S., “Structure of turbulent non-premixed jet flames in a diluted hot co flow”, Proc. Combust. Inst., 29 (1), 1147-1154 (2002). 6 Dally, B.B., Riesmeier, E., Peters, N., “Effect of fuel mixture on moderate and intense low oxygen dilution combustion”, Combust. Flame, 137 (4), 418-431 (2004). 7 Medwell, P.R., Kalt, P.A.M., Dally, B.B., “Influence of fuel type on turbulent non-premixed jet flames under MILD combustion conditions”, In:The 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, 1350-1355 (2007). 8 Park, J., Choi, J.G., Keel, S.I., Kirn, T.K., “Flame structure and NO emission in gas combustion of low calorific heating value”, Int. J. Energy Res., 27 (15), 1339-1361 (2003). 9 Park, J., Hwang, D.J., Chung, J.O., Keel, S.I., Shim, S.H., Lee, S.B., “Comparative study of flame structures and NOx emission characteristics in fuel injection recirculation and fuel gas recirculation combustion system”, Int. J. Energy Res., 28(10), 861-885 (2004). 10 Hwang, D.J., Park, J., Oh, C.B., Lee, K.H., Keel, S.I., “Numerical study on NO formation in CH4-O2-N2 diffusion flame diluted with CO2 ”, Int. J. Energy Res., 29 (2), 107-120 (2005). 11 Park, J., Hwang, D.J., Choi, J.G., Lee, K.M., Keel, S.I., Shim, S.H., “Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in Hsub>2-Osub>2 counterflow diffusion flames”, Int. J. Energy Res., 27 (13), 1205-1220 (2003). 12 Yang, W., Blasiak, W., “Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air”, Energy, 30 (2-4), 385-398 (2005). 13 Lille, S., Blasiak, W., Jewartowski, M., “Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases”, Energy, 30 (2-4), 373-384 (2005). 14 Mortberg, M., “Study gas fuel jet burning in low oxygen content and high temperature oxidizer”, Ph.D. Thesis, Royal Institute of Technology, Sweden (2005). 15 Gosman, A.D., Lockwood, F.C., “Incorporation of flux model for radiation into a finite difference procedure for furnace calculation”, In:The Proceeding 14th International Combustion Symposium, Combustion Inst., USA, 661-671 (1972). 16 Truelove, J.S., Heat Exchanger Design Handbook, Hemisphere Publishing Corporation, New York (1983). 17 Launder, B.E., Spalding, D.B., Mathematical Models of Turbulence, Academic Press, New York (1972). 18 Fluent Inc., Fluent 5 Manual, New Hampshire (1998). 19 Pun, W.M., Spalding, D.B., “A procedure for predicting the velocity and temperature distributions in a confined, steady, turbulent, gaseous, diffusion flame”, In:Proceeding of International Astronautical Federation Meeting, Belgrade, Yugoslavia (1967). 20 Fernandez-Tarrazo, E., Sanchez, A.L., Linan, A., Williams, F.A., “A simple one-step chemistry model for partially premixed hydrocarbon combustion”, Combust. Flame, 147 (1/2), 32-38 (2006). 21 Fernandez-Tarrazo, E., Vera, M., Linan, A., “Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air”, Combust. Flame., 144 (1/2), 261-276 (2006). 22 Garrido-Lopez, D., Sarkar, S., “Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation”, Proc. Combust. Inst., 30 (1), 621-628 (2005). 23 Khalil, E.E., Spalding, D.B., Whitlaw, J.H., “The calculation of local flow properties in two dimensional furnaces”, Int. J. Heat Mass Transfer, 18, 775-791 (1975). 24 Gosman, A.D., Pun, W.M., Runchal, A.K., Spalding, D.B., Wolfshetein, M., Heat and Mass Transfer in Recirculating Flow, Academic Press, London (1969). 25 Patankar, S.V., Spalding, D.B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 15, 1787 (1972). 26 Varga, R.S., Matrix Iterative Analysis, Prentice-Hall International, London (1962). 27 Nogay, R., Prasad, A., “Better design method for fired heaters”, Hydrocarbon Process., 91-95 (1985). 28 Ghia, K.N., Lavan, Z., Torda, T.P., “Turbulent mixing in the initial region of heterogeneous axisymmetric coaxial confined jets”, In:Report No. NASA CR-1615, Illinois Institute of Technology, Chicago (1970). 29 Hutchinson, P., Khalil, E.E., “The calculation of furnace flow properties and their experimental verification”, Heat Transfer, 276-283 (1976). 30 Yang, W., Blasiak, W., “Numerical simulation of properties of a LPG flame with high temperature air”, Int. J. Therm. Sci., 44 (10), 973-985 (2005). 31 Blasiak, W., Yang, W.H., Rafidi, N., “Physical properties of a LPG flame with high temperature air on a regenerative burner”, Combust. Flame, 136 (4), 567-569 (2004). 32 Abbasi Khazaei, K., Hamidi, A.A., Rahimi, M., “Numerical modeling and simulation of highly preheated and diluted air combustion furnaces”, Int. J. Engg., 22 (2), 107-118 (2009). 33 Yuan, J., Naruse, I., “Effects of air dilution on highly preheated air combustion in a regenerative furnace”, Energy Fuels, 13 (1), 99-104 (1998). 34 Kobayashi, H., Yoshikawa, K., “Thermal performance and numerical simulation of high temperature air combustion boiler”, In:The Proceeding International Joint Power Generation Conference (IJPGC2000-15083), Miami Beach, Florida (2000). 35 Rafidi, N., “Thermodynamic aspects and heat transfer characteristics of HiTAC furnaces with regenerators”, Ph.D. Thesis, Royal Institute of Technology, Sweden (2005). |