1 Gharagheizi, F., Alamdari, R.F., “Prediction of flash point temperature of pure components using a quantitative structure-property relationship model”, QSAR Comb. Sci., 27, 679-683 (2008). 2 Taskinen, J., Yliruusi, J., “Prediction of physicochemical properties based on neural network modeling”, Adv. Drug Deliv. Rev., 55, 1163-1183 (2003). 3 Vidal, M., Rogers, W.J., Holste, J.C., Mannan, M.S., “A review of estimations method for flash points and flammability limits”, Process Saf. Progress, 23, 47-55 (2004). 4 Suzuki, T., Ohtaguchi, K., Koide, K., “A method for estimating flash points of organic compounds from molecular structures”, J. Chem. Eng. Jpn., 24, 258-261 (1991). 5 Satyanarayana, K., Rao, P.G., “Improved equation to estimate flash points of organic compounds”, J. Hazard. Mater., 32, 81-85 (1992). 6 Tetteh, J., Suzuki, T., Metcalfe, E., Howells, S., “Quantitative structure-property relationships for the estimation of boiling point and flash point using a radial basis function neural network”, J. Chem. Inf. Comput. Sci., 39, 491-507 (1999). 7 Katritzky, A.R., Petrukhin, R., Jain, R., Karelson, M., “QSPR analysis of flash points”, J. Chem. Inf. Comput. Sci., 41, 1521-1530 (2001). 8 Zhokhova, N.I., Baskin, I.I., Palyulin, V.A., Zefirov, A.N., Zefirov, N.S., “Fragmental descriptors in QSPR:Flash point calculations”, Russ. Chem. Bull. Int. Ed., 52, 1885-1892 (2003). 9 Albahri, T.A., “Flammability characteristics of pure hydrocarbons”, Chem. Eng. Sci., 58, 3629-3641 (2003). 10 Vazhev, V.V., Aldabergenov, M.K., Vazheva, N.V., “Estimation of flash points and molecular masses of alkanes from their IR spectra”, Petrol. Chem., 46, 136-139 (2006). 11 Pan, Y., Jiang, J., Wang, Z., “Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network”, J. Hazard. Mater., 147, 424-430 (2007). 12 Katritzky, A.R., Stoyanova-Slavova, I.B., Dobchev, D.A., Karelson, M., “QSPR modeling of flash points:An update”, J. Mol. Graph. Model., 26, 529-536 (2007). 13 Lazzús, J.A., “Neural network based on quantum chemistry for predicting melting point of organic compounds”, Chin. J. Chem. Phys., 22, 19-26 (2009). 14 Lazzús, J.A., “ρ-T-P prediction for ionic liquids using neural networks”, J. Taiwan Inst. Chem. Eng., 40, 213-232 (2009). 15 Lazzús, J.A., “Prediction of solid vapor pressures for organic and inorganic compounds using a neural network”, Thermochim. Acta, 489, 53-62 (2009). 16 Lazzús, J.A., “Estimation of density as a function of temperature and pressure for imidazolium-based ionic liquids using a multilayer net with particle swarm optimization”, Int. J. Thermophys., 30, 833-909 (2009). 17 Lazzús, J.A., “Hybrid method to predict melting points of organic compounds using group contribution+neural network+particle swarm algorithm”, Ind. Eng. Chem. Res., 48, 8760-8766 (2009). 18 Luo, Q., Yi, D., “A co-evolving framework for robust particle swarm optimization”, Appl. Math. Comput., 199, 611-622 (2008). 19 MathWorks, MatLab version 6.5.0., The MathWorks Inc. (2002). 20 Da, Y., Xiurun, G., “An improved PSO-based ANN with simulated annealing technique”, Neurocomputing, 63, 527-533 (2005). 21 Jiang, Y., Hu, T., Huang, C., Wu, X., “An improved particle swarm optimization algorithm”, Appl. Math. Comput., 193, 231-239 (2007). 22 Daubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation, Taylor & Francis, London (2000). |