1 Wang, X., Xu, X., Choi, S.U.S., “Thermal conductivity of nanoparticle-Fluid mixture”, J. Thermophys. Heat Transfer., 13, 474-480 (1999). 2 Eastmann, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluid containing copper nanoparticles”, App. Phys. Lett., 78, 718-720 (2001). 3 Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A., “Anomalous thermal conductivity enhancement in nano-tube suspension”, Appl. Phys. Lett., 79, 2252-2254 (2001). 4 Xie, H., Wang, J., Xi, T., Liu, Y., “Thermal conductivity enhancement of suspensions containing nanosized alumina particles”, J. Appl. Phys., 91, 4568-4572 (2002). 5 Xie, H., Wang, J., Xi, T., Liu, Y., “Thermal conductivity of suspensions containing nanosized SiC particles”, Int. J. Thermophys., 23, 571-579 (2002). 6 Marsher, S.M.S., Leong, K.C., Yang, C., “Enhanced thermal conductivity of TiO2-water based nanofluids”, Int. J. Therm. Sci., 44, 367-373 (2005). 7 Prasher, R., Bhattacharya, P., Phelan, P. E., “Thermal conductivity of nanoscale colloidal solutions (nanofluids)”, Phys. Rev. Lett., 94, 025901 (2005). 8 Xuan, Y., Li, Q., “Investigation on convective heat transfer and flow features of nanofluids”, J. Heat Transfer, 125, 151-155 (2003). 9 Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions”, Int. J. Heat Mass Tran., 47, 5181-5188 (2004). 10 Das, S.K., Putra, N., Roetzel, W., “Pool boiling characteristics of nano-fluids”, Int. J. Heat Mass Tranfer, 46, 851-862 (2003). 11 Garg, J., Poudel, B., Chiesa, M., Gordon, J.B., Ma, J.J., Wang, J.B., Ren, Z.F., Kang, Y.T., Ohtani, H., Nanda, J., McKinley, G.H., Chen, G., “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid”, J. Appl. Phys., 103, 74301 (2008). 12 Peng, H., Ding, G., Jiang, W., Hu, H., Gao, Y., “Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube”, Int. J. Refrig., 32, 1756-1764 (2009). 13 Liao, L., Liu, Z.H., “Forced convective flow drag and heat transfer characteristics of carbon nanotube suspensions in a horizontal small tube”, Heat Mass Transfer, 45, 1129-1136 (2009). 14 Fotukian, S.M., Nasr, E.M., “Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube”, Int. Commun. Heat Mass, 37, 214-219 (2010). 15 Prasher, R., Song, D., Wang, J., Phelan, P., “Measurements of nanofluid viscosity and its implications for thermal applications”, Appl. Phys. Lett., 89, 133108 (2006). 16 Chen, H., Ding, Y., Tan, C., “Rheological behaviour of nanofluids”, New J. Phys., 9, 367 (2007). 17 Teipel, U., Förter-Barth, U., “Rheology of nano-scale aluminum suspensions”, Propell. Explos. Pyrot., 26, 268-272 (2001). 18 Davis, V.A., Ericson, L.M., Parra-Vasquez, A.N.G., Fan, H., Wang, Y., Prieto, V., Longoria, J.A., Ramesh, S., Saini, R.K., Kittrell, C., Billups, W.E., Wade, A.W., Hauge, R.H., Smalley, R.E., Pasquali, M., “Phase behavior and rheology of SWNTs in superacids”, Macromolecules, 37, 154-160 (2004). 19 Kwak, K., Kim, C., “Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol”, Korea-Australia Rheol. J., 17, 35-40 (2005). 20 Kole, M., Dey, T.K., “Viscosity of alumina nanoparticles dispersed in car engine coolant”, Exp. Therm. Fluid Sci., 34, 677-683 (2010). 21 Li, X., Zhu, D., Wang, X., “Experimental investigation on viscosity of Cu-H2O nanofluid”, J. Wuhan Univ. Technol., 24, 48-52 (2009). 22 Yu, M., Lin, J., Xiong, H., “Quadrature method of moments for nanoparticle coagulation and diffusion in the planar impinging jet flow”, Chin. J. Chem. Eng., 15, 828-836 (2007). 23 Lin, J., Lin, P., Yu, M., Chen, H., “Nanoparticle transport and coagulation in bends of circular cross section via a new moment method”, Chin. J. Chem. Eng., 18, 1-9 (2010). 24 Toms, B.A., “Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds number”, In: Proc. 1st Int. Congr. Rheology, Burgers, J.M., ed., North Holland, Amsterdam, vol. 2, 135-141 (1949). 25 Toms, B.A., “On the early experiments on drag reduction by polymers”, Phys. Fluids, 20, S3-S5 (1977). 26 Yu, Z., Lin, J., Shao, X., Zhang, W., “Stability and drag reduction in transient channel flow of fibre suspensions”, Chin. J. Chem. Eng., 12, 319-323 (2004). 27 Savings, J.G., “A stress-controlled drag reduction phenomenon”, Rheol. Acta, 6, 323-330 (1967). 28 Cates, M.E., Candau, S.J., “Statics and dynamics of worm-like surfactant micelles”, J. Phys. Condens. Matter., 2, 6869-6892 (1990). 29 Ohlendorf, D., Interthal, W., Hoffmann, H., “Surfactant systems for drag reduction: Physico-chemical properties and rheological behaviour”, Rheol. Acta, 25, 468-486 (1986). 30 Usui, H., Itoh, T., Saeki, T., “On pipe diameter effects in surfactant drag-reducing pipe flows”, Rheol. Acta, 37, 122-128 (1998). 31 Gasljevic, K., Aguilar, G., Matthys, E.F., “On two distinct types of drag-reducing fluids, diameter scaling, and turbulent profiles”, J. Non-Newton. Fluid, 96, 405-425 (2001). 32 Liu, Z.H., Liao, L., “Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added”, Int. J. Therm. Sci., 49, 2331-2338 (2010). 33 Haruki, N., Inaba, H., Horibe, A., Tanaka, S., “Viscosity measurements of ethylene glycol solution with flow drag reduction additives”, Heat Transfer-Asian Res., 35, 553-567 (2006). 34 Cho, S.H., Tae, S.B., Zaheeruddin, M., “Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction”, Energ. Conves. Manage., 48, 913-918 (2007). 35 Tamano, S., Itoh, M., Kato, K., Yokota, K., “Turbulent drag reduction in nonionic surfactant solutions”, Phys. Fluids, 22, 055102 (2010). 36 Zakin, J.L., Myska, J., Chara, Z., “New limiting drag reduction and velocity profile for non-polymeric additives systems”, AIChE J., 42, 3544-3546 (1996). 37 Namburu, P.K., Kulkarni, D.P., Misra, D., Das, D.K., “Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture”, Exp. Therm. Fluid Sci., 32, 397-402 (2007). |