[1] S. Wiriyasart, P. Naphon, Thermal performance enhancement of vapor chamber by coating mini-channel heat sink with porous sintering media, Int. J. Heat Mass Transf. 126(2018) 116-122. [2] Y. Varol, H.F. Oztop, A. Varol, Natural convection in porous triangular enclosures with a solid adiabatic fin attached to the horizontal wall, International Communications in Heat and Mass Transfer 34(2007) 19-27. [3] F. Selimefendigil, H.F. Öztop, Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field, J. Magn. Magn. Mater. 417(2016), 327-337. [4] O.A.Akbari AAAA Alrashed A Heydari, The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel, Physica B 537(2018) 176-183. [5] A Afshari, M Akbari, D Toghraie, ME Yazdi, Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%), J. Therm. Anal. Calorim. 132(2), 2018, -1001-1015. [6] L.P. Naphon, N. Songkran, Continuous Nanofluids jet impingement heat transfer and flow in a micro-channel heat sink, Int. J. Heat Mass Transf. 126(2018) 924-932. [7] A. Heydari, O.A. Akbari, M.R. Safaei, M. Derakhshani, A.A.A.A. Alrashed, R. Mashayekhi, Ahmadi Sheikh Shabani, G H.R., Zarringhalam, M., Nguyen, T.K., The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel, J. Therm. Anal. Calorim., 131(2018) 2893-2912. [8] Gholami, MR., Akbari, O.A., Marzban, A., Toghraie, D., Ahmadi Sheikh Shabani, G H.R., Zarringhalam, M., The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J. Therm. Anal. Calorim., 134(3) (2018) 1611-1628. [9] Paisarn Naphon, Songkran, T. Wiriyasart, L. Arisariyawong, N. Ann, Numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink, Int. J. Heat Mass Transf. 131(2018) 329-340. [10] R. Sarlak, Sh. Yousefzadeh, O.A. Akbari, D. Toghraie, S. Sarlak, F. Assadi, The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field, Int. J. Mech. Sci. 133(2017) 674-688. [11] D Toghraie, Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface, Physica E, 84, 2016, 454-465. [12] P. Naphon, Experimental study on the nanofluids convective heat transfer characteristics in spirally coiled tube, Int. J. Heat Mass Transf. 93(2016) 293-300. [13] Z. Li, M. Sheikholeslami, Z. Shah, A. Shafee, A.R. Al-Qawasmi, I. Tlili, Transient process in a finned triplex tube during phase changing of aluminum oxide enhanced PCM, The European Physical Journal Plus 134(2019) 173. [14] Karbasifar, Bijan, M Akbari, D Toghraie, Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder, Int. J. Heat Mass Transf. 116(1), 2018, 1237-1249. [15] R. Mashayekhi, E. Khodabandeh, M. Bahiraei, L. Bahrami, D. Toghraie, O.A. Akbari, Application of a novel conical strip insert to improve the efficacy of water-Ag nanofluid for utilization in thermal systems:A two-phase simulation, Energ Conv Manag 151(2017) 573-586. [16] M. Sheikholeslami, M. Jafaryar, A. Shafee, Z.X. Li, Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure, Physica A:Statistical Mechanics and its Applications (2019) https://doi.org/10.1016/j.physa.2019.02.020. [17] S. Oveissi, D. Toghraie, S.A. Eftekhari, Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid, Physica E, 83, 2016, 275-283. [18] Arabpour, A., Karimipour, A., Toghraie, D., Akbari, O.A., Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel, J. Therm. Anal. Calorim.131(2018) 2975-2991. [19] M. Sheikholeslami, R. Haq, A. Shafee, Z. Li, Y.G. Elaraki, I. Tlili, Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger, Int. J. Heat Mass Transf. 135(2019) 470-478. [20] E. Khodabandeh, M.R. Safaei, S. Akbari, O.A. Akbari, A.A.A.A. Alrashed, Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds:Geometric study, Renew. Energ 122(2018) 1-16. [21] A.A.A.A. Alrashed, O.A. Akbari, A. Heydari, D. Toghraie, M. Zarringhalam, Gh. Ahmadi Sheikh Shabani, A.R. Seifi, M. Goodarzi, The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel, Phys. B Condens. Matter 537(2018) 176-183. [22] M. Sheikholeslami, Omid Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems, J. Clean. Prod. 215(2019) 963-977. [23] M. Sheikholeslami, R. Haq, A. Shafee, Z.X. Li, Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins, Int. J. Heat Mass Transf. 130(2019) 1322-1342. [24] Toghraie, D., Mahmoudi, M., Akbari, O.A., Pourfattah, F., Heydari, Mousa., The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels, J. Therm. Anal. Calorim., 135(1) (2019) 145-159. [25] H. Pourdel, H.H. Afrouzi, O.A. Akbari, M. Miansar, D. Toghraie, A. Marzban, A. Koveiti, Numerical investigation of turbulent flow and heat transfer in flat tube Effect of dimples with operational goals, J. Therm. Anal. Calorim. 135(6) (2019) 3471-3483. [26] P. Promvonge, C. Thianpong, Thermal performance assessmen to turbulent channel flow over different shape ribs, Int Commun Heat Mass Transf 35(10) (2008) 1327-1334. [27] Q. Fan, X. Yin, 3-D numerical study on the effect of geometrical parameters on thermal behavior of dimple jacket in thin-film evaporator, Applied Thermal Engineering 28(2008) 1875-1881. [28] G.N. Xie, J. Liu, P.M. Ligrani, W.H. Zhang, Numerical analysis of flow structure and heat transfer characteristics in square channels with different internal-protruded dimple geometrics, Int. J. Heat Mass Transf. 67(2013) 81-97. [29] H.S. Yoon, S.H. Park, C.Y. Choi, M.Y. Ha, Numerical study on characteristics of flow and heat transfer in a cooling passage with a tear-drop dimple surface, Int. J. Therm. Sci. 89(2015) 121-135. [30] Y. Wang, Y.-L. He, Y.-G. Lei, J. Zhang, Heat transfer and hydrodynamics analysis of a novel dimpled tube, Exp. Thermal Fluid Sci. 34(2010) 1273-1281. [31] P.G. Vicente, A. Garc, A. Viedma, Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow, Int. J. Heat Mass Transf. 45(2002) 5091-5105. [32] S.D. Hwang, H.G. Kwon, H.H. Cho, Local heat transfer and thermal performance on periodicallydimple-protrusion patterned walls for compact heat exchanger, Energy 35(12) (December 2010) 5357-5364. [33] H.M. Kim, M.A. Moon, K.Y. Kim, Multi-objective optimization of a cooling channel with staggered elliptic dimples, Energy 36(5) (2011) 3419-3428. [34] C. Bi, G.H. Tang, W.Q. Tao, Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves, Applied pplied Thermal Engineering 55(1-2) (2013) 121-132. [35] T.M. Liou, J.J. Hwang, S.H. Chen, Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall, Int. J. Heat Mass Transf. 36(1993) 507-517. [36] H.A. Mohammed, G. Bhaskaran, N.H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids:A review, Renew. Sust. Energ. Rev. 15(2011) 1502-1512. [37] X.M. Huang, W. Yang, T.Z. Ming, W.Q. Shen, X.F. Yu, Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples, Int. J. Heat Mass Transf. 112(2017) 113-124. [38] G. Neha, Katarwar, R.K. Patil, An experimental study on heat transfer enhancement of flat plates using dimples, International Journal of Current Engineering and Technology, MIT College of Engineering, Pune, India, INPRESSCO IJCET Special Issue-5, MECHPGCON, 2016. [39] M. Badr, M.A. Habib, S. Anwar, R. Ben-Mansour, S.A.M. Said, Turbulent natural convection in vertical parallel-plate channels, Heat Mass Transf. 43(2006) 73-84. [40] M. Sheikholeslami, A. Ghasemi, Z.X. Li, Ahmad Shafee, S. Saleem, Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term, Int. J. Heat Mass Transf. 126((2018) 1252-1264. [41] R. Mashayekhi, E. Khodabandeh, O.A. Akbari, D. Toghraie, M. Bahiraei, M. Gholami, CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink, J. Therm. Anal. Calorim. 134(2018) 2305-2315. [42] M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput. Methods Appl. Mech. Eng. 344(2019) 319-333. [43] E. Khodabandeh, S.A. Rozati, M. Joshaghani, O.A. Akbari, S. Akbari, D. Toghraie, Thermal performance improvement in water nanofluid/GNP-SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs, J. Therm. Anal. Calorim. 136(2019) 1333-1345. [44] M. Sheikholeslami, Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method, Comput. Methods Appl. Mech. Eng. 344(2019) 306-318. [45] H. Moumni, H. Welhezi, R. Djebali, E. Sediki, Accurate finite volume investigation of nanofluid mixed convection in two-sided lid-driven cavity including discrete sources, Appl. Math. Model. 39(2015) 4164-4179. [46] I. Mejri, A. Mahmoudi, MHD natural convection in a nanofluid-filled open enclosure with a sinusoidal boundary condition, Chem. Eng. Res. Des. 98(2015) 1-16. [47] H. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20(1952) 571-581. [48] J. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, 1873. [49] M. Davoudian, A. Arab Solghar, Natural convection heat transfer in a square cavity containing a nanofluid with a baffle under a magnetic field, Heat Transfer Research 45(2014) 725-748. [50] O.A. Akbari, D. Toghraie, A. Karimipour, Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi attached rib, Adv. Mech. Eng. 8(4) (2016) 1-25. [51] O.A. Akbari, D. Toghraie, A. Karimipour, Impact of ribs on flow parameters and laminar heat transfer of water-aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel, Adv. Mech. Eng. 7(11) (2015) 1-11. [52] O.A. Akbari, A. Karimipour, D. Toghraie Semiromi, M.R. Safaei, H. Alipour, M. Goodarzi, M. Dahari, Investigation of Rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a two dimensional ribmicrochannel, Appl. Math. Compu. 290(2016) 135-153. [53] S.W. Chang, H.W. Wu, D.Y. Guo, J.J. Shi, T.H. Chen, Heat transfer enhancement of vertical dimpled fin array in natural convection, Int. J. Heat Mass Transf. 106(2017) 781-792. |