Chin.J.Chem.Eng. ›› 2013, Vol. 21 ›› Issue (5): 507-519.DOI: 10.1016/S1004-9541(13)60503-0
• CATALYSIS, KINETICS AND REACTION ENGINEERING • Previous Articles Next Articles
F. Fazlollahi1, M. Sarkari2, H. Gharebaghi3, H. Atashi3, M. M. Zarei3, A. A. Mirzaei4, W. C. Hecker1
Received:
2011-09-20
Revised:
2012-08-02
Online:
2013-05-31
Published:
2013-05-28
F. Fazlollahi1, M. Sarkari2, H. Gharebaghi3, H. Atashi3, M. M. Zarei3, A. A. Mirzaei4, W. C. Hecker1
通讯作者:
H. Atashi
F. Fazlollahi, M. Sarkari, H. Gharebaghi, H. Atashi, M. M. Zarei, A. A. Mirzaei, W. C. Hecker. Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide[J]. Chin.J.Chem.Eng., 2013, 21(5): 507-519.
F. Fazlollahi, M. Sarkari, H. Gharebaghi, H. Atashi, M. M. Zarei, A. A. Mirzaei, W. C. Hecker. Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide[J]. Chinese Journal of Chemical Engineering, 2013, 21(5): 507-519.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/S1004-9541(13)60503-0
1 Dry, M.E., "The Fischer-Tropsch process", Catal. Today, 71,227-241 (2002). 2 Schulz, H., "Short history and present trends of Fischer-Tropsch synthesis", Appl. Catal. A, 186,3-12 (1999).3 Lox, E.S., Froment, G.F., "Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst.2. Kinetic modeling", Ind. Eng. Chem. Res., 32,71-82 (1993).4 Nakhaei Pour, A., Housaindokht, M.R., Tayyari, S.F., Zarkesh, J., "Kinetics studies of nano-structured iron catalyst in Fischer-Tropsch synthesis", J. Nat. Gas Chem., 19,441-445 (2010).5 Ahon, V.R., Lage, P.L.C., De Souza, C.D.D., Mendes, F.M., Schmal, M., "Kinetic rates of the Fischer-Tropsch synthesis on a Co/Nb2O5 catalyst", J. Nat. Gas Chem., 15,307-312 (2006).6 Nakhaei Pour, A., Housaindokht, M.R., Tayyari, S.F., Zarkesh, J., "Kinetics of the water-gas shift reaction in Fischer-Tropsch synthesis over a nano-structured iron catalyst", J. Nat. Gas Chem., 19,362-368 (2010).7 Tavasoli, A., Nakhaei Pour, A., Ahangari, M.G., "Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst", J. Nat. Gas Chem., 19,653-659 (2010).8 Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice,2nd edition, McGraw Hill, New York (1991).9 Nakhaei Pour, A., Housaindokht, M.R., Tayyari, S.F., Zarkesh, J., "Fischer-Tropsch synthesis by nano-structured iron catalyst", J. Nat. Gas Chem., 19,284-292 (2010). 10 Huff, J.R., Satterfield, C.N., "Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst", Ind. Eng. Chem. Process Dev. Des., 23,696-705 (1984).11 Yates, I.C., Satterfield, C.N., "Effect of carbon dioxide on the kinetics of the Fischer-Tropsch synthesis on iron catalysts", Ind. Eng. Chem. Res., 28,9-15 (1989).12 Riedel, T., Unruh, D., Schaub, G., "Fischer-Tropsch synthesis in a three phase slurry reactors behaviour of CO2", DGMK Tagungsber, 3,231-239 (2000).13 Ying, L., Hua, C.Z., Yu, W., Ying, L., Xu, H., Liang, B., Hong, W.X., Yuan, Y., Yong, B., Wang, L., "Effect of co-feeding carbon dioxide on Fischer-Tropsch synthesis over an iron-manganese catalyst in a spinning basket reactor", Fuel. Process. Technol., 89,234-241 (2008).14 Botes, F.G., Breman, B.B., "Development and testing of a new macro kinetic expression for the iron-based", Ind. Eng. Chem. Res., 45,7415-7426 (2006).15 Ojeda, M., Nabar, R., Nilekar, A.U., Ishikawa, A., Mavrikakis, M., Iglesia, E., "CO activation pathways and the mechanism of Fischer-Tropsch synthesis", J. Catal., 272,287-297 (2010).16 Ojeda, M., Li, A., Nabar, R., Nilekar, A.U., Mavrikakis, M., Iglesia, E., "Kinetically relevant steps and H2/D2 isotope effects in Fischer-Tropsch synthesis on Fe and Co catalysts", J. Phys. Chem. C, 114,19761-19770 (2010).17 Anderson, R.B., Catalysis, Reinhold Publishing Corporation, New York (1956).18 Bub, G., Baerns, M., "Prediction of the performance of catalytic fixed bed reactors for Fischer-Tropsch Synthesis", Chem. Eng. Sci., 35,348-355 (1980).19 Ledakowicz, S., Nettelhoff, H., Kokuun, R., Deckwer, W.D., "Kinetics of the Fischer-Tropsch synthesis in the slurry phase on a potassium promoted iron catalyst", Ind. Eng. Chem. Process Des. Dev., 24,1043-1049 (1985).20 Wojciechowski, B.W., "The kinetics of the Fischer Tropsch synthesis", Catal. Rev. Sci. Eng., 30,629-702 (1988). 21 Sarup, B., Wojciechowski, B.W., "Studies of the Fischer-Tropsch synthesis on a cobalt catalyst. II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons", Can. J. Chem. Eng., 67,62-74 (1989).22 Zimmerman, W.H., "Kinetic modeling of the Fischer-Tropsch synthesis", Ph. D. Thesis, TA&MU, USA (1990).23 van der Laan, G.P., Beenackers, A.A.C.M., "Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review", Catal. Rev. Sci. Eng., 41,255-302 (1999).24 van Steen, E., Schulz, H., "Polymerization kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts", Appl. Catal. A Gen., 186,309-320 (1999).25 van der Laan, G.P., Beenackers, A.A.C.M., "Intrinsic kinetics of the gas-solid Fischer-Tropsch and water gas shift reactions over a precipitated iron catalyst", Appl. Catal. A, 193,39-53 (2000).26 Pham, H.N., Nowicki, L., Xu, J., Datye, A.K., Bukur, D.B., Bartholomew, C., "Attrition resistance of supports for iron Fischer-Tropsch catalysts", Ind. Eng. Chem. Res., 42,4001-4008 (2003).27 Critchfield, B.L., "Statistical methods for kinetic modeling of Fischer-Tropsch synthesis on a supported iron catalyst", Ph. D. thesis, Brigham Young University, Utah (2006).28 Nakhaei Pour, A., Housaindokht, M.R., Zarkesh, J., Irani, M., Babakhani, E.G., "Kinetics study of CO hydrogenation on a precipitated iron catalyst", J. Ind. Eng. Chem., 18,597-603 (2012).29 Butt, J.B., "Carbide phases on iron-based Fischer-Tropsch synthesis catalysts. Part I: Characterization studies", Catal. Lett., 7,61-81 (1990).30 Malessa, R., Baerns, M., "Iron/manganese oxide catalysts for Fischer-Tropsch synthesis.4. Activity and selectivity", Ind. Eng. Chem. Res., 27,279-283 (1988).31 Wang, C., Wang, Q.X., Sun, X.D., Xu, L.Y., "CO Hydrogenation to light alkenes over Fe/Mn catalysts prepared by co precipitation and sol-gel methods", Catal. Lett., 105,93-101 (2005).32 Tao, Z.C., Yang, Y., Zhang, C.H., Li, T.Z., Ding, M.Y., Xiang, H.W., Li, Y.W., "Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis", J. Nat. Gas Chem., 16,278-285 (2007).33 Herranz, T., Rojas, S., Perez Alonso, F.J., Ojeda, M., Terreros, P., Fierro, J.L.G., "Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the micro emulsion methodology", Appl. Catal. A, 311,66-75 (2006).34 Zhang, C.H., Yang, Y., Teng, B.T., Li, T.Z., Zheng, H.Y., Xiang, H.W., Li, Y.W., "Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper", J. Catal., 237,405-415 (2006).35 Zhang, J., Huang, Y., Chen, X., "Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica", J. Nat. Gas Chem., 17,273-277 (2008).36 Li, T., Yang, Y., Zhang, C., "Effect of manganese on an iron-based Fischer-Tropsch synthesis catalyst prepared from ferrous sulfate", Fuel, 86,921-928 (2007).37 Schultz, H., Okcebay, H.G., Catalysis of Organic Reactions, Marcel Dekker, New York,153-169 (1984).38 Kolbel, H., Tillmetz, K.D., "Hydrocarbons and oxygen containing compounds", Belgian Pat.,237628 (1976). 39 Overett,M. J., Hill, R.O., Moss, J. R., " Organometallic chemistry and surface science: mechanistic models for the Fischer-Tropsch synthesis", Coordin. Chem. Rev., 206-207,581-605 (2000).40 Ponec, V., "Some aspects of the mechanism of methanation and Fischer-Tropsch synthesis", Catal. Rev. Sci. Eng., 18,151-171 (1978).41 Brady, R., Pettit, R., "Reactions of diazomethane on transition- metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction", J. Am. Chem. Soc., 102,6181-6182 (1980).42 Martinez, J.M., Adams, H., Bailey, N.A., Maitlis, P.M., "The coupling of vinyl and #em/em#-methylene ligands: A new view of the mechanism of the Fischer-Tropsch polymerisation reaction", J. Chem. Soc., 5,286-287 (1989).43 Joyner, R.W., "The mechanism of chain growth in the Fischer- Tropsch hydrocarbon synthesis", Catal. Lett., 1,307-310 (1988).44 Chang, J., Bai, L., Teng, B.T., Zhang, R., Yang, J., Xu, Y.Y., Xiang, H.W., Li, Y.W., "Kinetic modeling of Fischer-Tropsch synthesis over Fe-Cu-K-SiO2 catalyst in slurry phase reactor", Chem. Eng. Sci., 62,4983-4991 (2007).45 Ji, Y.Y., Xiang, H.W., Yang, J.L., Xu, Y.Y., Li, Y.W., Zhong, B., "Effect of reaction conditions on the product distribution during Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst", Appl. Catal. A, 214,77-86 (2001).46 Bai, L., Xiang, H.W., Li, Y.W., Han, Y.Z., Zhong, B., "Slurry phase Fischer-Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst", Fuel, 81,1577-1581 (2002).47 Li, T.Z., Yang, Y., Zhang, C., Tao, Z., Wan, H., Xia, A., Xiang, H., Wang, Y., "Effect of manganese incorporation manner on an iron-based catalyst for Fischer-Tropsch synthesis", J. Nat. Gas. Chem., 16,244-251 (2007).48 Maiti, G.C., Malessa, R., Baerns, M., "Iron/manganese oxide catalysts for Fischer-Tropsch synthesis: Part I: Structural and textural changes by calcination reduction and synthesis", Appl. Catal. A, 5,151-170 (1983).49 Maiti, G.C., Malessa, R., L?chner, U., Papp, H., Baerns, M., "Iron/manganese oxide catalysts for Fischer-Tropsch synthesis. Part II: Crystal phase composition, activity and selectivity", Appl. Catal. A, 16,215-225 (1985).50 van Dilk, W.L., Niemantsverdriet, J.W., van der Kraan, G.P., van der Baan, H.P., "Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the fischer tropsch reaction", Appl. Catal. A, 2,273-288 (1982).51 Barrault, J., Forquy, C., Perrichon, V., "Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction", Appl. Catal. A, 5,119-125 (1983). 52 Yang, J., Liu, Y., Chang, J., Wang, Y.N., Bai, L., Xu, Y.Y., Xiang, H.W., Li, Y.W., Zhong, B., "Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst", Ind. Eng. Chem. Res., 42,5066-5090 (2003). 53 Mirzaei, A.A., Vahid, S., Feyzi, M., "Fischer-Tropsch synthesis over iron manganese catalysts: Effect of preparation and operating conditions on catalyst performance", Adv. Phys. Chem., Article ID151489 (2009).54 Feyzi, M., Irandoust, M., Mirzaei, A.A., "Effects of promoters and calcination conditions on the catalytic performance of iron-manganese catalysts for Fischer-Tropsch synthesis", Fuel. Process. Technol., 92,1136-1143 (2011).55 Sari, A., Zamani, Y., Taheri, S.A., "Intrinsic kinetics of Fischer-Tropsch reactions over an industrial Co-Ru/γ-Al2O3 catalyst in slurry phase reactor", Fuel. Process. Technol., 90,1305-1313 (2009).56 Fogler, H.S., Elements of Chemical Reaction Engineering,2nd edition, Prentice-Hall, London (1992).57 Yang, J.H., Kim, H.J., Chun, D.H., Lee, H.T., Hong, J.C., Jung, H., Yang, J., "Mass transfer limitations on fixed-bed reactor for Fischer- Tropsch synthesis", Fuel. Process. Technol., 91,285-289 (2010).58 Ngwenya, T., Glasser, D., Hildebrandt, D., Coville, N., and Mukoma, P., "Fischer-Tropsch results and their analysis for reactor synthesis", Ind. Eng. Chem. Res., 44,5987-5994 (2005).59 Mollavali, M., Yaripour, F., Atashi, H., Sahebdelfar, S., "Intrinsic kinetics study of dimethyl ether synthesis from methanol on γ-Al2O3 catalysts", Ind. Eng. Chem. Res., 47,3265-3273 (2008).60 Zennaro, R., Tagliabue, M., Bartholomew, C. H., "Kinetics of Fischer-Tropsch synthesis on titania-supported cobalt", Catal. Today, 58,309-319 (2000).61 Levenspiel, O., Chemical Reaction Engineering,3th edition, Wiley, New York (1999).62 Fischer, F., Tropsch, H., "The direct synthesis of petroleum hydrocarbons with standard pressure. (First report)", Berichte der Deutschen Chemischen Gesellschaft, 59,830-831 (1926).63 Maitlis, P.M., "A new view of the Fischer-Tropsch polymerization reaction", Pure Appl. Chem., 61,1747-1754 (1989).64 Inderwildi, O.R., Jenkins, S.J, King, D.A., "Fischer-Tropsch mechanism revisited: Alternative pathways for the production of higher hydrocarbons from synthesis gas", J. Phys. Chem. C, 112,1305-1317 (2008).65 Ojeda, M., Ishikawa, A., Iglesia, E., Nabar, R., Nilekar, A., Mavrikakis, M., "Fischer-Tropsch synthesis catalysis: Low-temperature Fe catalysts and the mechanism for CO dissociation on Fe and Co", In: The20th NAM, Houston, TX,17-22 (2007).66 Zhang, C., Zhao, G., Liu, K., Yang, Y., Xiang, H., Li, Y., "Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts", J. Mol. Catal. A Chem., 328,35-43 (2010).67 Dry, M.E., Shingles, T., Boshoff, L.J., Oosthuizen, G.J., "Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis", J. Catal., 15,190-199 (1969).68 Gates, S.M., Russel, J.N, Yates, J.r., "Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(III)", Surface Sci., 171,111-134 (1986).69 Saeys, M., Reyniers, M.F., Thybaut, J.W., Neurock, M., Marin, G.B., "Adsorption of cyclohexadiene, cyclohexene and cyclohexane on Pt(III)", Surface Sci., 600,3121-3134 (2006).70 Saeys, M., Reyniers, M.F., Marin, G.B., Neurock, M., "Density functional study of the adsorption of1,4-cyclohexadiene on Pt(III): Origin of the C H stretch red shift", Surface. Sci., 513,315-327 (2002).71 Thybaut, J.W., Saeys, M, Marin, G.B., "Hydrogenation kinetics of toluene on Pt/ZSM-22", Chem. Eng. J., 90,117-129 (2002).72 Pinto, J.C., Marcos, W., Andre, L., Alberton, L., Schwaab, M., Embirucu, M., Melo, S.V.D., "Critical analysis of kinetic modeling procedures", Inter. J. Chem. Reactor Eng., 9, Article A87 (2011).73 Hu, X.D., Patrick, J., Robert, L., Brien, O., "High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis", U.S. Pat.,7452844 (2009).74 Bechara, R., Balloy, D., Dauphin, J.Y., Grimblot, J., "Influence of the characteristics of γ-aluminas on the dispersion and the reducibility of supported cobalt catalysts", Chem. Mater., 11,1703-1711 (1999).75 Brinker, C.J., WSchere, S., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York (1990).76 Cornell, R.M., Schwertmann, U., The Iron Oxide: Structure, Properties, Reactions, occurrance and Uses, VCH Publishers, Weinheim and New York (1996).77 Bercic, G., Levec, J., "Intrinsic and global reaction of methanol dehydration over γ-Al2O3 pellets", Ind. Eng. Chem. Res., 31,1035-1040 (1992).78 Box, G.E.P., Hunter, W.G., Hunter, J.S., Statistical for Experiments: An Introduction to Design, Data Analysis, and Model Building, Wiley, New York (2002).79 Nakhaei Pour, A., Housaindokht, M.R., Tayyari, S.F., Zarkesh, J., Shahri, S.M.K, "Water-gas-shift kinetics over a Fe/Cu/La/Si catalyst in Fischer-Tropsch synthesis", Chem. Eng. Res. Des., 89,262-269 (2010). |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[3] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[6] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[7] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[8] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[9] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[10] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[11] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[12] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[13] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[15] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||