1 Kricheldorf, H. R., Behnken, G., Schwarz, G., “Telechelic polyesters of ethane diol and adipic or sebacic acid by means of bismuth carboxylates as non-toxic catalysts”, Ploymer, 46, 11219-11224 (2007). 2 Franco, L., Subirana, J.A., Puiggali, J., “Incorporation of glycine residues in even-even polyamides. Part II: Nylons 6, 10 and 12, 10”, Polymer, 40 (9), 2429-2438 (1999). 3 Ning, Z.Y., Zhang, Q.S., Wu, Q.P., Li, Y.Z., Ma, D.X., Chen, J.Z., “Efficient synthesis of hydroxyl functioned polyesters from natural polyols and sebacic acid”, Chin. Chem. Lett., 22, 635-638 (2011). 4 Djordjevic, I., Choudhury, N.R., Dutta, N.K., Kumar, S., “Synthesis and characterization of novel citric acid-based polyester elastomers”, Polymer, 50, 1682-1691 (2009). 5 Tang, J.C., Zhang, Z.G., Song, Z.F., “Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol”, Eur. Polym. J., 42, 3360-3366 (2006). 6 Azcan, N., Demirel, E., “Obtaining 2-octanol, 2-octanone, and sebacic acid from castor oil by microwave-induced alkali fusion”, Ind. Eng. Chem. Res., 47, 174-1778 (2008). 7 Vasishtha, A.K., Trivedi, R.K., Das, G., “Sebacic acid and 2-octranol from castor oil”, Journal of the American Oil Chemists Society, 67, 333-337 (1990). 8 Kaneyuki, H.D., Hiratsuka, J., “Production of sebacic acid from n-decane by mutants derived from torulopsis-candida”, J. Ferment. Technol., 58, 405-410 (1980). 9 Al-Zuhair, S., EI-Naas, M., “Immobilization of pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations”, Biochem. Eng. J., 56, 46-50 (2011). 10 Tay, J.H., Jiang, H.L., Tay, S.T., “High-rate biodegradation of phenol by aerobically grown microbial granules”, J. Environ. Eng., 24, 243-247 (2004). 11 Zheng, H.D., Wang, B.Y., Wu, Y.X., Ren, Q.L., “Instability mechanisms of supported liquid membrane for phenol transport”, Chin. J. Chem. Eng., 17, 750-755 (2009). 12 Lu, G.C., Hao, J., Liu, L., Ma, H.W., Fang, Q.F., Wu, L.M., Wei, M.Q., Zhang, Y.H., “The adsorption of phenol by lignite activated carbon”, Chin. J. Chem. Eng., 19, 380-385 (2011). 13 Fortuny, A., Bengoa, C., Font, J., “Bimetallic catalysts for continuous catalytic wet air oxidation of phenol”, J. Hazard. Mater., 64, 181-193 (1999). 14 Jiang, H., Fang, Y., Guo, Q.X., “Studies on the extraction of phenol in wastewater”, J. Hazard. Mater., 101, 179-190 (2003). 15 Zhang, J.Y., Hu, A.X., Wang, Y., Xiao, X.H., Guo, J.B., Luo, X.F., “The separation of catechol from carbofuran phenol by extractive distillation”, Chin. J. Chem. Eng., 17, 42-46 (2009). 16 Rao, N.N., Singh, J.R., Misra, R., Nandy, T., “Liquid-liquid extraction of phenol form simulated sebacic acid”, J. Scientific and Industrial Research, 68, 823-828 (2009). 17 Jacek, O., Jacek, S., Jan, S., “Extraction of phenols and phenyl acetates with diethyl carbonate”, Analytica Chimica Acta, 535, 251-257 (2005). 18 Li, Z., Wu, M.H., Jiao, Z., Bao, B.R., Lu, S.L., “Extraction of phenol from wastewater by N-octanoylpyrrolidine”, J. Hazard. Mater., 114, 111-114 (2004). 19 Bernhard, B., Edwin, Z., Andre, B., “Phenol extraction with cyanex 923: Kinetics of the solvent impregnated resin application”, Reactive and Functional Polymers, 69, 264-271 (2009). 20 Tanase, D., Anicuta, G.S., Octavian, F., “Reactive extraction of phenols using sulfuric acid salts of trioctylamine” Chem. Eng. Sci., 54, 1559-1563 (1999). 21 Fu, X.C., Shen, W.X., Yao, T.Y., Physical Chemistry, Higher Education Press, Beijing (1990). (in Chinese) |