[1] N. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (2002) 2725-2750. [2] M. Watanabe, T. Sato, H. Inomata, R.L. Smith, K. Arai, A. Kruse, E. Dinjus, Chemical reactions of C1 compounds in near-critical and supercritical water, Chem. Rev. 104 (2004) 5803-5822. [3] H. Weingärtner, E.U. Franck, Supercritical water as a solvent, Angew. Chem. Int. 44 (2005) 2672-2692. [4] A. Kruse, E. Dinjus, Hot compressed water as reaction mediumand reactant properties and synthesis reactions, J. Supercrit. Fluids 39 (2007) 362-380. [5] P.E. Savage, Organic chemical reactions in supercritical water, Chem. Rev. 99 (1999) 603-622. [6] G. Brunner, Near critical and supercriticalwater. Part I. Hydrolytic and hydrothermal processes, J. Supercrit. Fluids 47 (2009) 373-381. [7] J. Fu, P.E. Savage, X. Lu, Hydrothermal decarboxylation of pentafluorobenzoic acid and quinolinic acid, Ind. Eng. Chem. Res. 48 (2009) 10467-10471. [8] B. Izzo, C.L. Harrell, M.T. Klein, Nitrile reaction in high-temperature water: kinetics and mechanism, AICHE J. 43 (1997) 2048-2058. [9] V.K. Krieble, C.I. Noll, The hydrolysis of nitrileswith acids, J. Am. Chem. Soc. 61 (1939) 560-563. [10] G.H. Wiegand, M. Tremelling, Kinetics and mechanism of the decomposition of potassium cyanide in aqueous alkaline medium. Hydrolysis of the simplest nitrile, hydrogen cyanide, J. Org. Chem. 37 (1972) 914-916. [11] J.H. Hall, M. Gisler, A simple method for converting nitriles to amides. Hydrolysis with potassium hydroxide in tert-butyl alcohol, J. Org. Chem. 41 (1976) 3769-3770. [12] P. Duan, L. Dai, P.E. Savage, Kinetics and mechanism of N-substituted amide hydrolysis in high-temperature water, J. Supercrit. Fluids 51 (2010) 362-368. [13] A. Krämer, S.Mittelstädt, H. Vogel, Hydrolysis of nitriles in supercriticalwater, Chem. Eng. Technol. 22 (1999) 494-500. [14] B. Izzo,M.T. Klein, C. LaMarca, N.C. Scrivner, Hydrothermal reaction of saturated and unsaturated nitriles: reactivity and reaction pathway analysis, Ind. Eng. Chem. Res. 38 (1999) 1183-1191. [15] D.S. Lee, E.F. Gloyna, Hydrolysis and oxidation of acetamide in supercritical water, Environ. Sci. Technol. 26 (1992) 1587-1593. [16] M. Faisal, N. Sato, A.T. Quitain, H. Daimon, K. Fujie, Hydrolysis and cyclodehydration of dipeptide under hydrothermal conditions, Ind. Eng. Chem. Res. 44 (2005) 5472-5477. [17] E. Venardou, E. Garcia-Verdugo, S.J. Barlow, Y.E. Gorbaty, M. Poliakoff, On-line monitoring of the hydrolysis of acetonitrile in near-critical water using Raman spectroscopy, Vib. Spectrosc. 35 (2004) 103-109. [18] C.L. Harrell, J.S. Moscariello, M.T. Klein, The absence of wall effects during benzonitrile hydrolysis, J. Supercrit. Fluids 14 (1999) 219-224. [19] P. Duan, Y. Wang, Y. Yang, L. Dai, Optimization of adiponitrile hydrolysis in subcritical water using an orthogonal array design, J. Solut. Chem. 38 (2009) 241-258. [20] M. Sarlea, S. Kohl, N. Blickhan, H. Vogel, Valeronitrile hydrolysis in supercritical water, ChemSusChem 3 (2010) 85-90. [21] M. Okazaki, T. Funazukuri, Decomposition of acetamide and formamide in pressurized hot water, J. Mater. Sci. 41 (2006) 1517-1521. [22] P. Duan, S. Li, Y. Yang, Z. Wang, L. Dai, Green medium for the hydrolysis of 5-cyanovaleramide, Chem. Eng. Technol. 32 (2009) 771-777. [23] P. Duan, S. Li, Z. Wang, L. Dai, Hydrolysis kinetics and mechanism of adipamide in high temperature water, Chem. Eng. Res. Des. 88 (2010) 1067-1072. [24] J. Fu, H. Ren, C. Shi, X. Lu, Hydrolysis kinetics of 2-cyanopyridine, 3-cyanopyridine, and 4-cyanopyridine in high-temperature water, Int. J. Chem. Kinet. 44 (2012) 641-648. |