[1] N.A. Bakar, M.M. Bettahar, M.A. Bakar, S. Monteverdi, J. Ismail, Low temperature activation of Pt/Ni supported MCM-41 catalysts for hydrogenation of benzene, J. Mol. Catal. A Chem. 333(1) (2010) 11-19.[2] J. Mahmoudi, M.N. Lotfollahi, A.H. Asl, Comparison of synthesized H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline with propylene, J. Ind. Eng. Chem. 24(2015) 113-120.[3] R. Wojcieszak, S. Monteverdi, M. Mercy, I. Nowak, M. Ziolek, M.M. Bettahar, Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sieves characteristics and activity in the hydrogenation of benzene, Appl. Catal. A Gen. 268(2004) 241-253.[4] Y. Ma, Y. Huang, Y. Cheng, L. Wang, X. Li, Biosynthesized ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for hydrogenation of benzene to cyclohexane:An eco-friendly and economical bioreduction method, Appl. Catal. A Gen. 484(2014) 154-160.[5] S. Lu, W.W. Lonergan, J.P. Bosco, S. Wang, Y. Zhu, Y. Xie, J.G. Chen, Low temperature hydrogenation of benzene and cyclohexene:a comparative study between γ-Al2O3 supported PtCo and PtNi bimetallic catalysts, J. Catal. 259(2) (2008) 260-268.[6] F. Dominguez, J. Sanchez, G. Arteaga, E. Choren, Gallia as support of Pt in benzene hydrogenation reaction, J. Mol. Catal. A Chem. 228(1) (2005) 319-324.[7] L. Zhu, H. Sun, H. Fu, J. Zheng, N. Zhang, Y. Li, B.H. Chen, Effect of ruthenium nickel bimetallic composition on the catalytic performance for benzene hydrogenation to cyclohexane, Appl. Catal. A Gen. 499(2015) 124-132.[8] R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev. 38(2) (2009) 481-494.[9] T. Jiang, L. Lu, X. Yang, Q. Zhao, T. Tao, H. Yin, K. Chen, Synthesis and characterization of mesoporous molecular sieve nanoparticles, J. Porous. Mater. 15(1) (2008) 67-73.[10] O. Domi, S. Marti, Y. Henri, L. D'Ornelas, H. Krentzien, J. Osuna, Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity, J. Mol. Catal. A Chem. 197(1) (2003) 185-191.[11] A. Gual, C. Godard, S. Castillon, C. Claver, Soluble transition-metal nanoparticlescatalysed hydrogenation of arenes, Dalton Trans. 39(2010) 11499-11512.[12] C. Hubert, E.G. Bile, A. Denicourt-Nowicki, A. Roucoux, Rh (0) colloids supported on TiO2:a highly active and pertinent tandem in neat water for the hydrogenation of aromatics, Green Chem. 13(2011) 1766-1771.[13] Y. Tonbul, M. Zahmakiran, S. Ozkar, Iridium (0) nanoparticles dispersed in zeolite framework:a highly active and long-lived green nanocatalyst for the hydrogenation of neat aromatics at room temperature, Appl. Catal. B Environ. 148(2014) 466-472.[14] K.X. Yao, X. Liu, Z. Li, C.C. Li, H.C. Zeng, Y. Han, Preparation of a Ru-nanoparticles/defective-graphene composite as a highly efficient arene-hydrogenation catalyst, ChemCatChem 4(12) (2012) 1938-1942.[15] S. Niembro, S. Donnici, A. Shafir, A. Vallribera, M.L. Buil, M.A. Esteruelas, C. Larramona, Perfluoro-tagged rhodium and ruthenium nanoparticles immobilized on silica gel as highly active catalysts for hydrogenation of arenes under mild conditions, New J. Chem. 37(2) (2013) 278-282.[16] J.W. Da-Silva, A.J.G. Cobo, The role of the titania and silica supports in Ru-Fe catalysts to partial hydrogenation of benzene, Appl. Catal. A Gen. 252(1) (2003) 9-16.[17] L.J. Simon, P.J. Kooyman, J.G. van Ommen, J.A. Lercher, Effect of Co and Ni on benzene hydrogenation and sulfur tolerance of Pt/H-MOR, Appl. Catal. A Gen. 252(2) (2003) 283-293.[18] K.Y. Tsai, I. Wang, T.C. Tsai, Zeolite supported platinum catalysts for benzene hydrogenation and naphthene isomerization, Catal. Today 166(1) (2011) 73-78.[19] A. Lewandowska, S. Monteverdi, M. Bettahar, M. Ziolek, MCM-41 mesoporous molecular sieves supported nickel-physico-chemical properties and catalytic activity in hydrogenation of benzene, J. Mol. Catal. A Chem. 188(1) (2002) 85-95.[20] M. Rostamizadeh, A. Taeb, Synthesis and reactivity in inorganic, Metal-Org. nano-Met. Chem. 46(2016) 665-671.[21] N. Parsafard, M.H. Peyrovi, M. Rashidzadeh, n-Heptane isomerization on a new kind of micro/mesoporous catalyst:Pt supported on HZSM-5/HMS, Microporous Mesoporous Mater. 200(2014) 190-198.[22] S. Therdthianwong, C. Siangchin, A. Therdthianwong, Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition, Fuel Process. Technol. 89(2) (2008) 160-168.[23] Y. Gao, F. Meng, K. Ji, Y. Song, Z. Li, Slurry phase methanation of carbon monoxide over nanosized Ni-Al2O3 catalysts prepared by microwave-assisted solution combustion, Appl. Catal. A Gen. 510(2016) 74-83.[24] F. Huang, R. Wang, C. Yang, H. Driss, W. Chu, H. Zhang, Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen, J. Energy Chem. 25(2016) 709-719.[25] A. Khojastehnezhad, F. Moeinpou, M. Vafaei, Molybdenum oxide supported on silica (moo3/sio2):an efficient and reusable catalyst for the synthesis of 1,8 dioxo decahydro acridines under solvent-free conditions, J. Mex. Chem. Soc. 59(2015) 29-35.[26] B.D. Cullity, Elements of X-ray Diffraction, second ed. Addison-Wesley, Reading, MA, 1978.[27] Y.J. Asencios, M.R. Sun-Kou, Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals:Pb (Ⅱ), Cd (Ⅱ) and Zn (Ⅱ), Appl. Surf. Sci. 258(24) (2012) 10002-10011.[28] N. Firdous, N.K. Janjua, I. Qazi, M.H.S. Wattoo, N. Firdous, N.K. Janjua, I. Qazi, M.H.S. Wattoo, Optimal Co-Ir bimetallic catalysts supported on γ-Al2O3 for hydrogen generation from hydrous hydrazine, Int. J. Hydrog. Energy 41(2) (2016) 984-995.[29] K.V. Manukyan, A.J. Cross, A.V. Yeghishyan, S. Rouvimov, J.J. Miller, A.S. Mukasyan, E.E. Wolf, Highly stable Ni-Al2O3 catalyst prepared from a Ni-Al layered double hydroxide for ethanol decomposition toward hydrogen, Appl. Catal. A Gen. 508(2015) 37-44.[30] Y.Z. Wang, F.M. Li, H.M. Cheng, L.Y. Fan, Y.X. Zhao, A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation, J. Fuel Chem. Technol. 41(8) (2013) 972-977.[31] C. Anjaneyulu, S.N. Kumar, V.V. Kumar, G. Naresh, S.K. Bhargava, K.V.R. Chary, A. Venugopal, Influence of La on reduction behaviour and Ni metal surface area of Ni-Al2O3 catalysts for COx free H2 by catalytic decomposition of methane, Int. J. Hydrog. Energy 40(9) (2015) 3633-3641.[32] S. Sepehri, M. Rezaei, G. Garbarino, G. Busca, Facile synthesis of a mesoporous alumina and its application as a support of Ni-based autothermal reforming catalysts, Int. J. Hydrog. Energy 41(2016) 3456-3461.[33] A. Fouskas, M. Kollia, A. Kambolis, C. Papadopoulou, H. Matralis, Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane, Appl. Catal. A Gen. 474(2014) 125-134.[34] H.Y. Kim, H.M. Lee, J.N. Park, Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst:Independent roles of MgO and Pd on CO2 methanation, J. Phys. Chem. C 114(15) (2010) 7128-7131. |