Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (3): 575-586.DOI: 10.1016/j.cjche.2018.06.020
• Process Systems Engineering and Process Safety • Previous Articles Next Articles
Xiaomei Wang, Chun Li, Hairong Yue, Shaojun Yuan, Changjun Liu, Siyang Tang, Bin Liang
Received:
2018-04-02
Revised:
2018-06-14
Online:
2019-04-25
Published:
2019-03-28
Contact:
Bin Liang,E-mail address:liangbin@scu.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21236004).
Xiaomei Wang, Chun Li, Hairong Yue, Shaojun Yuan, Changjun Liu, Siyang Tang, Bin Liang
通讯作者:
Bin Liang,E-mail address:liangbin@scu.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21236004).
Xiaomei Wang, Chun Li, Hairong Yue, Shaojun Yuan, Changjun Liu, Siyang Tang, Bin Liang . Effects of mechanical activation on the digestion of ilmenite in dilute H2SO4[J]. Chin.J.Chem.Eng., 2019, 27(3): 575-586.
Xiaomei Wang, Chun Li, Hairong Yue, Shaojun Yuan, Changjun Liu, Siyang Tang, Bin Liang . Effects of mechanical activation on the digestion of ilmenite in dilute H2SO4[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 575-586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.06.020
[1] | C.O. Robichaud, A.E. Uyar, M.R. Darby, L.G. Zucker, M.R. Wiesner, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environ. Sci. Technol. 43(2009) 4227-4233. |
[2] | K. Tyner, A. Wokovich, D. Godar, W. Doub, N. Sadrieh, The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance, Int. J. Cosmet. Sci. 33(2011) 234-244. |
[3] | Y. Yang, K. Doudrick, X. Bi, K. Hristovski, P. Herckes, P. Westerhoff, R. Kaegi, Characterization of food-grade titanium dioxide:The presence of nanosized particles, Environ. Sci. Technol. 48(2014) 6391-6400. |
[4] | A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol. 46(2012) 2242-2250. |
[5] | A. Zielinska, E. Kowalska, J.W. Sobczak, I. Lacka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Silver-doped TiO2 prepared by microemulsion method:Surface properties, bio-and photoactivity, Sep. Purif. Technol. 72(2010) 309-318. |
[6] | S. Yamada, K. Miyazawa, H. Naka, Y. Yoshida, Titanium Dioxide Concentrate and Its Manufacturing Process, 1974. |
[7] | J.B. Rosenbaum, Titanium technology trends, JOM 34(1982) 76-80. |
[8] | B. Liang, C. Li, C. Zhang, Y. Zhang, Leaching kinetics of Panzhihua ilmenite in sulfuric acid, Hydrometallurgy 76(2005) 173-179. |
[9] | C. Li, B. Liang, L. Guo, Z. Wu, Effect of mechanical activation on the dissolution of Panzhihua ilmenite, Miner. Eng. 19(2006) 1430-1438. |
[10] | J.A. Rahm, D.G. Cole, Process for Manufacturing Titanium Compounds Using a Reducing Agent, (US) 1981. |
[11] | Z. She, S. Xu, J. Fan, Decomposing titanium concentrate with acid in liquid phase by fluidization, Multipurpose Utilization of Mineral Resources, 1998. |
[12] | J.L. Jing, Q.Z. Zhang, L.Y. Qiu, B. Liang, An investigation on the liquid phase digestion of ilmenite in sulfate process TiO2 pigment production, Chem. React. Eng. Technol. 19(2003) 337-343. |
[13] | P. Balaz, Mechanical activation in hydrometallurgy, Int. J. Miner. Process. 72(2003) 341-354. |
[14] | P. Balaz, A. Alacova, M. Achimovicova, J. Ficeriova, E. Godocikova, Mechanochemistry in hydrometallurgy of sulfide minerals, Hydrometallurgy 77(2005) 9-17. |
[15] | A.Z. Juhasz, L. Opoczky, Mechanical Activation of Minerals by Grinding Pulverizing and Morphology of Particles, Halsted Press, New York, NY (United States), 1990. |
[16] | P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin Heidelberg, 2008. |
[17] | P. Balaz, M. Achimovicova, Mechano-chemical leaching in hydrometallurgy of complex sulphides, Hydrometallurgy 84(2006) 60-68. |
[18] | N.H. Fletcher, N.J. Welham, Enhanced dissolution following extended milling, AIChE J. 46(2000) 666-669. |
[19] | C. Sasikumar, D.S. Rao, S. Srikanth, B. Ravikumar, N.K. Mukhopadhyay, S.P. Mehrotra, Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa, India, Hydrometallurgy 75(2004) 189-204. |
[20] | D. Tromans, J.A. Meech, Enhanced dissolution of minerals:stored energy, amorphism and mechanical activation, Miner. Eng. 14(2001) 1359-1377. |
[21] | N.J. Welham, D.J. Llewellyn, Mechanical enhancement of the dissolution of ilmenite, Miner. Eng. 11(1998) 827-841. |
[22] | L. Wei, H. Hu, Q. Chen, J. Tan, Effects of mechanical activation on the HCl leaching behavior of plagioclase, ilmenite and their mixtures, Hydrometallurgy 99(2009) 39-44. |
[23] | L. Zhang, H. Hu, L. Wei, Q. Chen, J. Tan, Effects of mechanical activation on the HCL leaching behavior of titanaugite, ilmenite, and their mixtures, Metall. Mater. Trans. B 41(2010) 1158-1165. |
[24] | L. Zhang, H. Hu, Z. Liao, Q. Chen, J. Tan, Hydrochloric acid leaching behavior of different treated Panxi ilmenite concentrations, Hydrometallurgy 107(2011) 40-47. |
[25] | Y. Chen, T. Hwang, M. Marsh, J.S. Williams, Study on mechanism of mechanical activation, Mater. Sci. Eng. A 226-228(1997) 95-98. |
[26] | Y. Chen, J.S. Williams, S.J. Campbell, G.M. Wang, Increased dissolution of ilmenite induced by high-energy ball milling, Mater. Sci. Eng. A 271(1999) 485-490. |
[27] | C. Sasikumar, D.S. Rao, S. Srikanth, N.K. Mukhopadhyay, S.P. Mehrotra, Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4, Hydrometallurgy 88(2007) 154-169. |
[28] | C. Li, B. Liang, L.H. Guo, Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid, Hydrometallurgy 89(2007) 1-10. |
[29] | M. Achimovicova, S. Hassan-Pour, E. Gock, V. Vogt, P. Balaz, B. Friedrich, Aluminothermic production of titanium alloys (part 1):Synthesis of TiO2 as input material, Assoc. Metall. Eng. Serbia (AMES) 20(2014) 141-154. |
[30] | N.G. Kostova, M. Achimovicova, A. Eliyas, N. Velinov, V. Blaskov, I. Stambolova, E. Gock, TiO2 obtained from mechanically activated ilmenite and its photocatalytic properties, Bulg. Chem. Commun. 47(2015) 317-322. |
[31] | C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46(2004) 1-184. |
[32] | S. Fadda, A. Cincotti, A. Concas, M. Pisu, G. Cao, Modelling breakage and reagglomeration during fine dry grinding in ball milling devices, Powder Technol. 194(2009) 207-216. |
[33] | N.J. Welham, The effect of extended milling on minerals, CIM Bull. 90(1997) 64-68. |
[34] | A. Johansen, T. Schaefer, Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer, Eur. J. Pharm. Sci. 12(2001) 297-309. |
[35] | L. Lutterotti, P. Scardi, P. Maistrelli, LSI-A computer program for simultaneous refinement of material structure and microstructure, J. Appl. Crystallogr. 25(1992) 459-462. |
[36] | N.J. Welham, Enhanced dissolution of tantalite/columbite following milling, Int. J. Miner. Process. 61(2001) 145-154. |
[37] | A.M. Kalinkin, E.V. Kalinkina, Modelling of the sulfuric acid leaching of mechanically activated titanite, Hydrometallurgy 108(2011) 189-194. |
[38] | G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1(1953) 22-31. |
[39] | H. Li, Effect of Experimental Facility Style on the Activation of Mineral, 1997. |
[40] | G. Chen, J.H. Peng, J. Chen, Optimizing conditions for wet grinding of synthetic rutile using response surface methodology, Miner. Metall. Process. 28(2011) 44-48. |
[41] | G. Chen, J. Peng, J. Chen, S. Zhang, Response surface methodology applied to optimize the experimental conditions for preparing synthetic rutile by microwave irradiation:High temperature materials and processes, High Temp. Mater. Processes 28(2009) 165-174. |
[42] | Y. Chen, J. Williams, B. Ninham, Mechanochemical reactions of ilmenite with different additives, Colloids Surf. A Physicochem. Eng. Asp. 129(1997) 61-66. |
[43] | Y. Chen, Different oxidation reactions of ilmenite induced by high energy ball milling, J. Alloys Compd. 266(1998) 150-154. |
[44] | C. Li, B. Liang, Study on the mechanochemical oxidation of ilmenite, J. Alloys Compd. 459(2008) 354-361. |
[45] | O. Levenspiel, Chemical reaction engineering, Ind. Eng. Chem. Res. 38(1999) 1055-1076. |
[46] | D. Murhammer, D. Davis, O. Levenspiel, Shringking core model/reaction control for a wide size distribution of solids, Chem. Eng. J. 32(1986) 87-91. |
[47] | P.K. Gbor, C.Q. Jia, Critical evaluation of coupling particle size distribution with the shrinking core model, Chem. Eng. Sci. 59(2004) 1979-1987. |
[48] | T.C. Veloso, J.J.M. Peixoto, M.S. Pereira, V.A. Leao, Kinetics of chalcopyrite leaching in either ferric sulphate or cupric sulphate media in the presence of NaCl, Int. J. Miner. Process. 148(2016) 147-154. |
[49] | P. Gonzalez-Tello, F. Camacho, J.M. Vicaria, P.A. Gonzalez, A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-sizedistribution analysis, Powder Technol. 186(2008) 278-281. |
[50] | A. Monteiro, A. Afolabi, E. Bilgili, Continuous production of drug nanoparticle suspensions via wet stirred media milling:A fresh look at the Rehbinder effect, Drug Dev. Ind. Pharm. 39(2013) 266. |
[51] | D.H. Kaelble, A relationship between the fracture mechanics and surface energetics failure criteria, J. Appl. Polym. Sci. 18(1974) 1869-1889. |
[52] | S.L.S. Stipp, Toward a conceptual model of the calcite surface:hydration, hydrolysis, and surface potential, Geochim. Cosmochim. Acta 63(2000) 3121-3131. |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[5] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[6] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[7] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[8] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[9] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[10] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 243-250. |
[11] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 300-309. |
[12] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[13] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[14] | Hongbo Song, Wei Wang, Jiachen Sun, Xianhui Wang, Xianhua Zhang, Sai Chen, Chunlei Pei, Zhi-Jian Zhao. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 409-420. |
[15] | Kai Zhang, Fangming Xue, Zhiqiang Wang, Xingxing Cheng. Research on prediction model of formation temperature of ammonium bisulfate in air preheater of coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 202-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||