Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (11): 2229-2237.DOI: 10.1016/j.cjche.2018.08.003
• Special issue of Carbon Capture, Utilisation and Storage • Previous Articles Next Articles
Guoping Hu, Kathryn H. Smith, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish, Geoffrey W. Stevens
Received:
2017-12-20
Revised:
2018-07-04
Online:
2018-12-10
Published:
2018-11-28
Contact:
Guoping Hu, Geoffrey W. Stevens
Guoping Hu, Kathryn H. Smith, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish, Geoffrey W. Stevens
通讯作者:
Guoping Hu, Geoffrey W. Stevens
Guoping Hu, Kathryn H. Smith, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish, Geoffrey W. Stevens. Carbon dioxide capture by solvent absorption using amino acids: A review[J]. Chin.J.Chem.Eng., 2018, 26(11): 2229-2237.
Guoping Hu, Kathryn H. Smith, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish, Geoffrey W. Stevens. Carbon dioxide capture by solvent absorption using amino acids: A review[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2229-2237.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.003
[1] O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlomer, C.V. Stechow, IPCC, 2011:Summary for Policymakers. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2011.[2] Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos, Leo Meyer, Change, W. G. I. o. t. I. P. o. C, Carbon Dioxide Capture and Storage, Intergovernmental Panel on Climate Change, 2005.[3] S. Chu, Carbon capture and sequestration, Science 325(5948) (2009) 1599.[4] V.V. Klimenko, Experience of genetic forecasts for world energy:can we foresee the distant future? Dokl. Phys. 59(10) (2014) 491-494.[5] A. Raksajati, M.T. Ho, D.E. Wiley, Understanding the impact of process design on the cost of CO2 capture for precipitating solvent absorption, Ind. Eng. Chem. Res. 55(7) (2016) 1980-1994.[6] A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture:a critical review, Environ. Sci. Technol. 50(2016) 7276-7289.[7] J.K.J. Yong, G.W. Stevens, F. Caruso, S.E. Kentish, In situ layer-by-layer assembled carbonic anhydrase-coated hollow fiber membrane contactor for rapid CO2 absorption, J. Membr. Sci. 514(2016) 556-565.[8] D. Surovtseva, R. Amin, A. Barifcani, Design and operation of pilot plant for CO2 capture from IGCC flue gases by combined cryogenic and hydrate method, Chem. Eng. Res. Des. 89(9) (2011) 1752-1757.[9] I.M. Power, A.L. Harrison, G.M. Dipple, Accelerating mineral carbonation using carbonic anhydrase, Environ. Sci. Technol. 50(2016) 2610-2618.[10] R. Dugas, G. Rochelle, Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine, Energy Procedia 1(1) (2009) 1163-1169.[11] I.M. Bernhardsen, H.K. Knuutila, A review of potential amine solvents for CO2 absorption process:absorption capacity, cyclic capacity and pKa, Int. J. Greenhouse Gas Control 61(2017) 27-48.[12] L. Zhiwu, K. Fu, R. Idem, P. Tontiwachwuthikul, Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using aminebased absorbents, Chin. J. Chem. Eng. 24(2) (2015) 278-288.[13] G. Hu, N.J. Nicholas, K.H. Smith, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions:a review, Int. J. Greenhouse Gas Control 53(2016) 28-40.[14] T.N.G. Borhani, A. Azarpour, V. Akbari, S.R. Wan Alwi, Z.A. Manan, CO2 capture with potassium carbonate solutions:a state-of-the-art review, Int. J. Greenhouse Gas Control 41(2015) 142-162.[15] A.L. Kohl, R. Nielsen, Gas Purification, Gulf Professional Publishing, 1997.[16] I. Eide-Haugmo, O.G. Brakstad, K.A. Hoff, K.R. Sorheim, E.F. da Silva, H.F. Svendsen, Environmental impact of amines, Energy Procedia 1(1) (2009) 1297-1304.[17] A.P. Hallenbeck, A. Egbebi, K.P. Resnik, D. Hopkinson, S.L. Anna, J.R. Kitchin, Comparative microfluidic screening of amino acid salt solutions for post-combustion CO2 capture, Int. J. Greenhouse Gas Control 43(2015) 189-197.[18] S. Shen, Y.-N. Yang, Y. Wang, S. Ren, J. Han, A. Chen, CO2 absorption into aqueous potassium salts of lysine and proline:Density, viscosity and solubility of CO2, Fluid Phase Equilib. 399(2015) 40-49.[19] J.-a. Lim, D.H. Kim, Y. Yoon, S.K. Jeong, K.T. Park, S.C. Nam, Absorption of CO2 into aqueous potassium salt solutions of L-alanine and L-proline, Energy Fuel 26(6) (2012) 3910-3918.[20] X. Wang, N.G. Akhmedov, D. Hopkinson, J. Hoffman, Y. Duan, A. Egbebi, K. Resnik, B. Li, Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2, Appl. Energy 161(2016) 41-47.[21] M.E. Majchrowicz, D.W.F. Brilman, Solubility of CO2 in aqueous potassium l-prolinate solutions-absorber conditions, Chem. Eng. Sci. 72(2012) 35-44.[22] O. Erga, O. Juliussen, H. Lidal, Carbon dioxide recovery by means of aqueous amines, Energy Convers. Manag. 36(6) (1995) 387-392.[23] J.V. Holst, G.F. Versteeg, D.W.F. Brilman, J.A. Hogendoorn, Kinetic study of CO2 with various amino acid salts in aqueous solution, Chem. Eng. Sci. 64(1) (2009) 59-68.[24] S. Park, H.-J. Song, M.-G. Lee, J. Park, Screening test for aqueous solvents used in CO2 capture:K2CO3 used with twelve different rate promoters, Korean J. Chem. Eng. 31(1) (2014) 125-131.[25] G. Hu, K.H. Smith, Y. Wu, S.E. Kentish, G.W. Stevens, Screening amino acid salts as rate promoters in potassium carbonate solvent for carbon dioxide absorption, Energy Fuel 31(4) (2017) 4280-4286.[26] S. Shen, Y.-n. Yang, Carbon dioxide absorption into aqueous potassium salt solutions of arginine for post-combustion capture, Energy Fuel 30(8) (2016) 6585-6596.[27] U.E. Aronu, A. Hartono, K.A. Hoff, H.F. Svendsen, Kinetics of carbon dioxide absorption into aqueous amino acid salt:potassium salt of sarcosine solution, Ind. Eng. Chem. Res. 50(18) (2011) 10465-10475.[28] A. Sodiq, A.V. Rayer, A.A. Olanrewaju, M.R. Abu Zahra, Reaction kinetics of carbon dioxide (CO2) absorption in sodium salts of taurine and proline using a stoppedflow technique, In. J. Chem. Kinet. 46(12) (2014) 730-745.[29] N. Aldenkamp, P. Huttenhuis, N. Penders-Van Elk, E. Steinseth Hamborg, G.F. Versteeg, Solubility of carbon dioxide in aqueous potassium salts of glycine and taurine at absorber and desorber conditions, J. Chem. Eng. Data 59(11) (2014) 3397-3406.[30] U.E. Aronu, E.T. Hessen, T. Haug-Warberg, K.A. Hoff, H.F. Svendsen, Vapor-liquid equilibrium in amino acid salt system:experiments and modeling, Chem. Eng. Sci. 66(2011) 2191-2198.[31] Y. Zhao, S. Shen, Y. Bian, Y.-n. Yang, U. Ghosh, CO2 solubility in aqueous potassium lysinate solutions at absorber conditions, J. Chem. Thermodyn. 111(2017) 100-105.[32] Y.-T. Chang, R.B. Leron, M.-H. Li, Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid at high pressures, J. Chem. Thermodyn. 83(2014) 110-116.[33] P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, G.F. Versteeg, Equilibrium solubility of CO2 in aqueous potassium taurate solutions:part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids, Ind. Eng. Chem. Res. 42(12) (2003) 2831-2840.[34] A. Portugal, J. Sousa, F. Magalhaes, A. Mendes, Solubility of carbon dioxide in aqueous solutions of amino acid salts, Chem. Eng. Sci. 64(9) (2009) 1993-2002.[35] E.S. Hamborg, J.P. Niederer, G.F. Versteeg, Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K, J. Chem. Eng. Data 52(6) (2007) 2491-2502.[36] Y. Bian, S. Shen, Y. Zhao, Y.-n. Yang, Physicochemical properties of aqueous potassium salts of basic amino acids as absorbents for CO2 capture, J. Chem. Eng. Data 61(7) (2016) 2391-2398.[37] S. Garg, A.M. Shariff, M.S. Shaikh, B. Lal, A. Aftab, N. Faiqa, Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture, Chem. Eng. Res. Des. 113(2016) 169-181.[38] E.S. Hamborg, W.P.M. van Swaaij, G.F. Versteeg, Diffusivities in aqueous solutions of the potassium salt of amino acids, J. Chem. Eng. Data 53(5) (2008) 1141-1145.[39] F. Harris, K.A. Kurnia, M.I.A. Mutalib, M. Thanapalan, Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption, J. Chem. Eng. Data 54(2009) 144-147.[40] J.v. Holst, S.R.A. Kersten, K.J.A. Hogendoorn, Physiochemical properties of several aqueous potassium amino acid salts, J. Chem. Eng. Data 53(6) (2008) 1286-1291.[41] P. Ji, W. Feng, Solubility of amino acids in water and aqueous solutions by the statistical associating fluid theory, Ind. Eng. Chem. Res. 47(16) (2008) 6275-6279.[42] S. Mazinani, R. Ramazani, A. Samsami, A. Jahanmiri, B. Van der Bruggen, S. Darvishmanesh, Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution, Fluid Phase Equilib. 396(2015) 28-34.[43] M.S. Shaikh, A.M. Shariff, M.A. Bustam, G. Murshid, Physicochemical properties of aqueous solutions of sodium glycinate in the non-precipitation regime from 298.15 to 343.15K, Chin. J. Chem. Eng. 23(3) (2015) 536-540.[44] G. Astarita, D.W. Savage, J.M. Longo, Promotion of CO2 mass transfer in carbonate solutions, Chem. Eng. Sci. 36(3) (1981) 581-588.[45] D. Guo, H. Thee, G. da Silva, J. Chen, W. Fei, S. Kentish, G.W. Stevens, Borate-catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism, Environ. Sci. Technol. 45(11) (2011) 4802-4807.[46] P.D. Vaidya, E.Y. Kenig, CO2-alkanolamine reaction kinetics:a review of recent studies, Chem. Eng. Technol. 30(11) (2007) 1467-1474.[47] M. Caplow, Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90(24) (1968) 6795-6803.[48] P.V. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34(4) (1979) 443-446.[49] H. Thee, Reactive Absorption of Carbon Dioxide into Promoted Potassium Carbonate Solvent, The University of Melbourne, 2013.[50] J.E. Crooks, J.P. Donnellan, Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, J. Chem. Soc. Perkin Trans. 2(4) (1989) 331-333.[51] P.S. Kumar, J.A. Hogendoorn, G.F. Versteeg, P.H.M. Feron, Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine, AIChE J. 49(1) (2003) 203-213.[52] J. Van Holst, P.P. Politiek, J.P. Niederer, G.F. Versteeg, CO2 capture from flue gas using amino acid salt solutions, Proceedings of 8th International Conference on Greenhouse Gas Control Technologies, 2006.[53] P.D. Vaidya, E.Y. Kenig, Gas-liquid reaction kinetics:a review of determination methods, Chem. Eng. Commun. 194(12) (2007) 1543-1565.[54] K. Simons, W. Brilman, H. Mengers, K. Nijmeijer, M. Wessling, Kinetics of CO2 absorption in aqueous sarcosine salt solutions:influence of concentration, temperature, and CO2 loading, Ind. Eng. Chem. Res. 49(20) (2010) 9693-9702.[55] A.F. Portugal, P.W.J. Derks, G.F. Versteeg, F.D. Magalhaes, A. Mendes, Characterization of potassium glycinate for carbon dioxide absorption purposes, Chem. Eng. Sci. 62(23) (2007) 6534-6547.[56] S.-W. Park, Y.-S. Son, D.-W. Park, K.-J. Oh, Absorption of carbon dioxide into aqueous solution of sodium glycinate, Sep. Sci. Technol. 43(11-12) (2008) 3003-3019.[57] P.D. Vaidya, P. Konduru, M. Vaidyanathan, E.Y. Kenig, Kinetics of carbon dioxide removal by aqueous alkaline amino acid salts, Ind. Eng. Chem. Res. 49(21) (2010) 11067-11072.[58] M.E. Majchrowicz, S. Kersten, W. Brilman, Reactive absorption of carbon dioxide in l-prolinate salt solutions, Ind. Eng. Chem. Res. 53(28) (2014) 11460-11467.[59] A.F. Portugal, F.D. Magalhaes, A. Mendes, Carbon dioxide absorption kinetics in potassium threonate, Chem. Eng. Sci. 63(13) (2008) 3493-3503.[60] N. Mahmud, A. Benamor, M.S. Nasser, M.J. Al-Marri, H. Qiblawey, P. Tontiwachwuthikul, Reaction kinetics of carbon dioxide with aqueous solutions of L-arginine, glycine & sarcosine using the stopped flow technique, Int. J. Greenhouse Gas Control 63(2017) 47-58.[61] Q. Xiang, M. Fang, H. Yu, M. Maeder, Kinetics of the reversible reaction of CO2(aq) and HCO3- with sarcosine salt in aqueous solution, J. Phys. Chem. A 116(42) (2012) 10276-10284.[62] D. Guo, H. Thee, C.Y. Tan, J. Chen, W. Fei, S. Kentish, G.W. Stevens, G. da Silva, Amino acids as carbon capture solvents:chemical kinetics and mechanism of the glycine + CO2 reaction, Energy Fuel 27(7) (2013) 3898-3904.[63] D.E. Penny, T.J. Ritter, Kinetic study of the reaction between carbon dioxide and primary amines, J. Chem. Soc. Faraday 179(9) (1983) 2103-2109.[64] A. Benamor, M.J. Al-Marri, M. Khraisheh, M.S. Nasser, P. Tontiwachwuthikul, Reaction kinetics of carbon dioxide in aqueous blends of N-methyldiethanolamine and glycine using the stopped flow technique, J. Nat. Gas Sci. Eng. 33(2016) 186-195.[65] G. Hu, K. Smith, L. Liu, S. Kentish, G. Stevens, Reaction kinetics and mechanism between histidine and carbon dioxide, Chem. Eng. J. 307(2017) 56-62.[66] H. Thee, N.J. Nicholas, K.H. Smith, G. da Silva, S.E. Kentish, G.W. Stevens, A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids:Glycine, sarcosine and proline, Int. J. Greenhouse Gas Control 20(2014) 212-222.[67] S. Lee, H.-J. Song, S. Maken, J.-W. Park, Kinetics of CO2 absorption in aqueous sodium glycinate solutions, Ind. Eng. Chem. Res. 46(5) (2007) 1578-1583.[68] S. Paul, K. Thomsen, Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline, Int. J. Greenhouse Gas Control 8(2012) 169-179.[69] S. Shen, X. Feng, R. Zhao, U.K. Ghosh, A. Chen, Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine, Chem. Eng. J. 222(2013) 478-487.[70] S. Shen, Y.N. Yang, Y. Bian, Y. Zhao, Kinetics of CO2 sbsorption into aqueous basic amino acid salt:potassium salt of lysine solution, Environ. Sci. Technol. 50(2016) 2054-2063.[71] S. Shen, Y.-n. Yang, Y. Zhao, Y. Bian, Reaction kinetics of carbon dioxide absorption into aqueous potassium salt of histidine, Chem. Eng. Sci. 146(2016) 76-87.[72] G.F. Versteeg, L.A.J. Van Dijck, W.P.M. Van Swaaij, On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview, Chem. Eng. Commun. 144(1) (1996) 113-158.[73] U.E. Aronu, H.F. Svendsen, K.A. Hoff, Investigation of amine amino acid salts for carbon dioxide absorption, Int. J. Greenhouse Gas Control 4(5) (2010) 771-775.[74] A. Hartono, U.E. Aronu, H.F. Svendsen, Liquid speciation study in amine amino acid salts for CO2 absorbent with 13C-NMR, Energy Procedia 4(2011) 209-215.[75] U.E. Aronu, H.F. Svendsen, K.A. Hoff, H. Knuutila, Pilot plant study of 3-(methylamino) propylamine sarcosine for post-combustion CO2 capture, Proceedings of the 2nd Annual Gas Processing Symposium, 2010, Elsevier 2010, pp. 339-348.[76] R. Ramazani, A. Samsami, A. Jahanmiri, B.V.d. Bruggen, S. Mazinani, Characterization of monoethanolamine+potassium lysinate blend solution as a new chemical absorbent for CO2 capture, Int. J. Greenhouse Gas Control 51(2016) 29-35.[77] S. Mazinani, A. Samsami, A. Jahanmiri, A. Sardarian, Solubility (at low partial pressures), density, viscosity, and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG), J. Chem. Eng. Data 56(7) (2011) 3163-3168.[78] S. Ahn, H.-J. Song, J.-W. Park, J.H. Lee, I.Y. Lee, K.-R. Jang, Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2, Korean J. Chem. Eng. 27(5) (2010) 1576-1580.[79] T. Jockenhovel, R. Schneider, Towards commercial application of a secondgeneration post-combustion capture technology-pilot plant validation of the siemens capture process and implementation of a first demonstration case, Energy Procedia 4(2011) 1451-1458.[80] H. Lepaumier, D. Picq, P.-L. Carrette, New amines for CO2 capture. Ⅱ. Oxidative degradation mechanisms, Ind. Eng. Chem. Res. 48(2009) 9068-9075.[81] S. Martin, H. Lepaumier, D. Picq, J. Kittel, T. de Bruin, A. Faraj, P.-L. Carrette, New amines for CO2 capture. IV. Degradation, corrosion, and quantitative structure property relationship model, Ind. Eng. Chem. Res. 51(18) (2012) 6283-6289.[82] T. Supap, R. Idem, P. Tontiwachwuthikul, C. Saiwan, Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases:a comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations, Ind. Eng. Chem. Res. 45(2006) 2437-2451.[83] A. Bello, R.O. Idem, Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases, Ind. Eng. Chem. Res. 45(2006) 2569-2579.[84] T. Wang, K.-J. Jens, A study of oxidative degradation of AMP for post-combustion CO2 capture, Energy Procedia 23(2012) 102-110.[85] S. Lee, S.-I. Choi, S. Maken, H.-J. Song, H.-C. Shin, J.-W. Park, K.-R. Jang, J.-H. Kim, Physical properties of aqueous sodium glycinate solution as an absorbent for carbon dioxide removal, J. Chem. Eng. Data 50(2005) 1773-1776.[86] J.-G. Lu, Y. Ji, H. Zhang, M.-D. Chen, CO2 capture using activated amino acid salt solutions in a membrane contactor, Sep. Sci. Technol. 45(9) (2010) 1240-1251.[87] J. Bronsted, C. Teeter, On kinetic salt effect, J. Phys. Chem. 28(6) (1924) 579-587.[88] R. Pohorecki, W.d.w. Moniuk, Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions, Chem. Eng. Sci. 43(7) (1988) 1677-1684.[89] J. Bronsted, Acid and basic catalysis, Chem. Rev. 5(3) (1928) 231-338.[90] J.T. Cullinane, G.T. Rochelle, Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine, Ind. Eng. Chem. Res. 45(8) (2006) 2531-2545.[91] A. Ellis, R. Golding, The solubility of carbon dioxide above 100 degrees C in water and in sodium chloride solutions, Am. J. Sci. 261(1) (1963) 47-60.[92] C.C. French, The effect of neutral salts on certain catalytic decompositions, J. Phys. Chem. 32(3) (1928) 401-414.[93] M. Kim, H.-J. Song, M.-G. Lee, H.-Y. Jo, J.-W. Park, Kinetics and steric hindrance effects of carbon dioxide absorption into aqueous potassium alaninate solutions, Ind. Eng. Chem. Res. 51(6) (2012) 2570-2577.[94] M.E. Majchrowicz, D.W.F. Brilman, M.J. Groeneveld, Precipitation regime for selected amino acid salts for CO2 capture from flue gases, Energy Procedia 1(1) (2009) 979-984.[95] J. Brouwer, P. Feron, N. Ten Asbroek, Amino-acid salts for CO2 capture from flue gases, Fourth Annual Conference on Carbon Capture & Sequestration, 2005.[96] T. Jockenhoevel, R. Schneider, H. Rode, Development of an economic postcombustion carbon capture process, Energy Procedia 1(1) (2009) 1043-1050.[97] H. Knuutila, U.E. Aronu, H.M. Kvamsdal, A. Chikukwa, Post combustion CO2 capture with an amino acid salt, Energy Procedia 4(2011) 1550-1557.[98] M.E. Majchrowicz, W. Brilman, Amino acid salts for carbon dioxide capture:evaluating L-prolinate at desorber conditions, Energy Fuel 29(5) (2015) 3268-3275.[99] H.-J. Song, S. Lee, K. Park, J. Lee, D. Chand Spah, J.-W. Park, T.P. Filburn, Simplified estimation of regeneration energy of 30 wt% sodium glycinate solution for carbon dioxide absorption, Ind. Eng. Chem. Res. 47(24) (2008) 9925-9930.[100] M. Iso-Tryykari, J. Rauramo, E. Pekkanen, FINNCAP-Meri-Pori CCS demonstration project, Energy Procedia 4(2011) 5599-5606.[101] D.A. Kuettel, CO2 Absorption Rate Improvement of an Amino Acid Salt Solvent with an Inorganic Promoter, Technical University of Berlin, 2016.[102] B. Fischer, Investigation of the Reactions when Applying Amino Acid Salts for PostCombustion Carbon Capture Processes:Degradation Pathways, Environmental and Economic Impact, University of Duisburg-Essen, 2013. |
[1] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[2] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[3] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[4] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[5] | Yuandong Cui, Bin He, Yu Lei, Yu Liang, Wanting Zhao, Jian Sun, Xiaomin Liu. Lignin derived absorbent for efficient and sustainable CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 89-97. |
[6] | Yilin Song, Yize Zhang, Hao Zhou. Experimental study on the desulfurization and evaporation characteristics of Ca(OH)2 droplets [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 127-135. |
[7] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[8] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
[9] | Xiaodong Yang, Na Yang, Ziqiang Gong, Feifei Peng, Bin Jiang, Yongli Sun, Luhong Zhang. The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 296-305. |
[10] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
[11] | Jing Gao, Zhijun Ma, Fuli Liu, Cunxin Chen. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 206-217. |
[12] | Yaran Yin, Xianming Zhang, Chunying Zhu, Taotao Fu, Youguang Ma. Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 214-222. |
[13] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[14] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[15] | Liwang Wang, Hualin Wang, Liang Ma, Zhanghuang Yang, Erwen Chen. Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 435-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||