Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (5): 1424-1435.DOI: 10.1016/j.cjche.2020.02.027
• Materials and Product Engineering • Previous Articles Next Articles
Jing Zhao, Yifu Zhang, Lei Xu, Fuping Tian, Tao Hu, Changgong Meng
Received:
2019-09-30
Revised:
2020-01-29
Online:
2020-07-29
Published:
2020-05-28
Contact:
Yifu Zhang, Changgong Meng
Supported by:
Jing Zhao, Yifu Zhang, Lei Xu, Fuping Tian, Tao Hu, Changgong Meng
通讯作者:
Yifu Zhang, Changgong Meng
基金资助:
Jing Zhao, Yifu Zhang, Lei Xu, Fuping Tian, Tao Hu, Changgong Meng. Weak base favoring the synthesis of highly ordered V-MCM-41 with well-dispersed vanadium and the catalytic performances on selective oxidation of benzyl alcohol[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1424-1435.
Jing Zhao, Yifu Zhang, Lei Xu, Fuping Tian, Tao Hu, Changgong Meng. Weak base favoring the synthesis of highly ordered V-MCM-41 with well-dispersed vanadium and the catalytic performances on selective oxidation of benzyl alcohol[J]. 中国化学工程学报, 2020, 28(5): 1424-1435.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.02.027
[1] V. Zelenak, M. Skrinska, F.R. Siperstein, A. Patti, Phase evolution during one-pot synthesis of amine modified mesoporous silica materials:Preparation, properties, carbon dioxide adsorption, Appl. Surf. Sci. 476(2019) 886-896. [2] M.T. Janicke, C.C. Landry, S.C. Christiansen, D. Kumar, G.D. Stucky, B.F. Chmelka, Aluminum incorporation and interfacial structures in MCM-41 mesoporous molecular sieves, J. Am. Chem. Soc. 120(1998) 6940-6951. [3] X. Wang, G. Zhou, Z. Chen, Q. Li, H. Zhou, C. Xu, Enhancing the vanadium dispersion on V-MCM-41 by boron modification for efficient iso-butane dehydrogenation, Appl. Catal. A-Gen 555(2018) 171-177. [4] G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle, G.L. Haller, Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde, Appl. Catal., A 302(2006) 48-61. [5] S.C. Laha, R. Kumar, Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti-and V-MCM-41 and their catalytic properties in oxidation reactions, Microporous Mesoporous Mater. 53(2002) 163-177. [6] M.L. Peña, V. Fornés, F. Rey, M.I. Vazquez, J.M. Lopez Nieto, V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase, Appl. Catal. A Gen. 209(2001) 155-164. [7] M.D. Jones, M.J. Duer, S. Hermans, Y.Z. Khimyak, B.F.G. Johnson, J.M. Thomas, Solidstate NMR studies of MCM-41 supported with a highly catalytically active cluster, Angew. Chem. Int. Ed. 41(2002) 4726-4729. [8] Q.H. Zhang, Y. Wang, Y. Ohishi, T. Shishido, K. Takehira, Vanadium-containing MCM-41 for partial oxidation of lower alkanes, J. Catal. 202(2001) 308-318. [9] A.L. Cánepa, V.R. Elías, V.M. Vaschetti, E.V. Sabre, G.A. Eimer, S.G. Casuscelli, Selective oxidation of benzyl alcohol through eco-friendly processes using mesoporous VMCM-41, Fe-MCM-41 and Co-MCM-41 materials, Appl. Catal. A-Gen 545(2017) 72-78. [10] M. Salavati-Niasari, Zeolite-encapsulated nickel (II) complexes with 14-membered hexaaza macrocycle:synthesis and characterization, Inorg. Chem. Commun. 7(2004) 963-966. [11] Q. Zhang, W. Yang, X. Wang, Y. Wang, T. Shishido, K. Takehira, Coordination structures of vanadium and iron in MCM-41 and the catalytic properties in partial oxidation of methane, Microporous Mesoporous Mater. 77(2005) 223-234. [12] M. Salavati-Niasari, Zeolite-encapsulation copper(II) complexes with 14-membered hexaaza macrocycles:synthesis, characterization and catalytic activity, J. Mol. Catal. A Chem. 217(2004) 87-92. [13] M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)-guest[unsaturated 16-membered Octaaza-macrocycle manganese (II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials, Chem. Lett. 34(2005) 1444-1445. [14] M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes, Inorg. Chem. Commun. 8(2005) 174-177. [15] M. Salavati-Niasari, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil) acetylacetonato manganese(III)]) nanocomposite materials (HGNM), Microporous Mesoporous Mater. 95(2006) 248-256. [16] M. Salavati-Niasari, Host (nanocage of zeolite-Y)/guest (manganese(II), cobalt(II), nickel(II) and copper(II) complexes of 12-membered macrocyclic Schiff-base ligand derived from thiosemicarbazide and glyoxal) nanocomposite materials:Synthesis, characterization and catalytic oxidation of cyclohexene, J. Mol. Catal. A Chem. 283(2008) 120-128. [17] D.P. Sahoo, D. Rath, B. Nanda, K.M. Parida, Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production:A review, RSC Adv. 5(2015) 83707-83724. [18] A. Corma, M.T. Navarro, J.P. Pariente, Synthesis of an ultralarge pore titanium silicate lsomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, Chem. Commun. (1994) 147-148. [19] N. Ulagappan, C.N.R. Rao, Synthesis and characterization of the mesoporous chromium silicates, Cr-MCM-41, Chem. Commun. (1996) 1047-1048. [20] Y. Yang, S. Lim, G. Du, Y. Chen, D. Ciuparu, G.L. Haller, Synthesis and characterization of highly ordered Ni-MCM-41 mesoporous molecular sieves, J. Phys. Chem. B 109(2005) 13237-13246. [21] K. Wu, B. Li, C. Han, J. Liu, Synthesis, characterization of MCM-41 with high vanadium content in the framework and its catalytic performance on selective oxidation of cyclohexane, Appl. Catal., A 479(2014) 70-75. [22] M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials, Microporous Mesoporous Mater. 116(2008) 77-85. [23] S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, S. Kundu, Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies:Material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation, Inorg. Chem. 54(2015) 3851-3863. [24] M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered Decaaza macrocycle copper(II) complexes, Chem. Lett. 34(2005) 244-245. [25] M. Salavati-Niasari, F. Davar, Host (nanodimensional pores of zeolite Y)-guest (3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane,[Ni(R2Bzo2 [14] aneN6)]2+) nanocomposite materials:Synthesis, characterization and catalytic oxidation of cyclohexene, Inorg. Chem. Commun. 9(2006) 263-268. [26] M. Salavati-Niasari, A. Sobhani, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of cyclohexane by host (nanopores of zeolite-Y)/guest (Mn(II), Co (II), Ni(II) and Cu(II) complexes of bis(salicyaldehyde)oxaloyldihydrazone) nanocomposite materials, J. Mol. Catal. A Chem. 285(2008) 58-67. [27] M. Salavati-Niasari, M. Dadkhah, F. Davar, Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, trisacetylacetonato zirconium(IV) nitrate as new precursor complex, Inorg. Chim. Acta 362(2009) 3969-3974. [28] M. Salavati-Niasari, Nanoscale microreactor-encapsulation 14-membered nickel(II) hexamethyl tetraaza:Synthesis, characterization and catalytic activity, J. Mol. Catal. A Chem. 229(2005) 159-164. [29] M. Salavati-Niasari, P. Salemi, F. Davar, Oxidation of cyclohexene with tertbutylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N,N'-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina, J. Mol. Catal. A Chem. 238(2005) 215-222. [30] M. Salavati-Niasari, Host (nanocavity of zeolite-Y)-guest (tetraaza [14] annulene copper(II) complexes) nanocomposite materials:Synthesis, characterization and liquid phase oxidation of benzyl alcohol, J. Mol. Catal. A Chem. 245(2006) 192-199. [31] M. Salavati-Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Synthesis, characterization and catalytic oxidation of cyclohexane using a novel host (zeolite-Y)/guest (binuclear transition metal complexes) nanocomposite materials, Inorg. Chim. Acta 362(2009) 3715-3724. [32] S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, Praseodymium oxide nanostructures:Novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties, RSC Adv. 5(2015) 33792-33800. [33] M. Ghiyasiyan-Arani, M. Salavati-Niasari, Effect of Li2CoMn3O8 nanostructures synthesized by a combustion method on Montmorillonite K10 as a potential hydrogen storage material, J. Phys. Chem. C 122(2018) 16498-16509. [34] J. Zhao, Y. Zhang, S. Zhang, Q. Wang, M. Chen, T. Hu, C. Meng, Synthesis and characterization of Mn-Silicalite-1 by the hydrothermal conversion of Mn-magadiite under the neutral condition and its catalytic performance on selective oxidation of styrene, Microporous Mesoporous Mater. 268(2018) 16-24. [35] G. Ming-Lin, L. Hui-Zhen, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts, Green Chem. 9(2007) 421-423. [36] B. Grunberg, T. Emmler, E. Gedat, I. Shenderovich, G.H. Findenegg, H.H. Limbach, G. Buntkowsky, Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by H-1 solid-state NMR, Chem. Eur. J. 10(2004) 5689-5696. [37] G. Feng, P. Cheng, W. Yan, M. Boronat, X. Li, J.-H. Su, J. Wang, Y. Li, A. Corma, R. Xu, J. Yu, Accelerated crystallization of zeolites via hydroxyl free radicals, Science 351(2016) 1188-1191. [38] A.I. Lupulescu, J.D. Rimer, In situ imaging of Silicalite-1 surface growth reveals the mechanism of crystallization, Science 344(2014) 729. [39] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time, Chem. Rev. 103(2003) 663-701. [40] J. Zhao, Y. Zhang, F. Tian, Y. Zuo, Y. Mu, C. Meng, High pH promoting the synthesis of V-Silicalite-1 with high vanadium content in the framework and its catalytic performance in selective oxidation of styrene, Dalton Trans. 47(2018) 11375-11385. [41] Y. Meng, H.C. Genuino, C.-H. Kuo, H. Huang, S.-Y. Chen, L. Zhang, A. Rossi, S.L. Suib, One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, MnZSM-5, characterization, and catalytic oxidation of hydrocarbons, J. Am. Chem. Soc. 135(2013) 8594-8605. [42] X. Wang, G. Zhou, Z. Chen, W. Jiang, H. Zhou, In-situ synthesis and characterization of V-MCM-41 for oxidative dehydrogenation of n-butane, Microporous Mesoporous Mater. 223(2016) 261-267. [43] G. Feng, J. Wang, M. Boronat, Y. Li, J.-H. Su, J. Huang, Y. Ma, J. Yu, Radical-facilitated green synthesis of highly ordered Mesoporous silica materials, J. Am. Chem. Soc. 140(2018) 4770-4773. [44] J. Xu, W. Chu, S. Luo, Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability, J. Mol. Catal. A Chem. 256(2006) 48-56. [45] A.B.J. Arnold, J.P.M. Niederer, T.E.W. Nießen, The influence of synthesis parameters on the vanadium content and pore size of[V]-MCM-41 materials, Microporous Mesoporous Mater. 28(1999) 353-360. [46] K.J. Chao, C.N. Wu, H. Chang, Incorporation of vanadium in Mesoporous MCM-41 and microporous AFI zeolites, J. Phys. Chem. B 101(1997) 6341-6349. [47] S. Shylesh, A.P. Singh, Synthesis, characterization, and catalytic activity of vanadiumincorporated,-grafted, and -immobilized mesoporous MCM-41 in the oxidation, of aromatics, J. Catal. 228(2004) 333-346. [48] S. Shylesh, A. Singh, Vanadium-containing ordered mesoporous silicates:Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? J. Catal. 233(2005) 359-371. [49] B. Singh, A.K. Sinha, Synthesis of hierarchical mesoporous vanadium silicate-1 zeolite catalysts for styrene epoxidation with organic hydroperoxide, J. Mater. Chem. A 2(2014) 1930-1939. [50] P.K. Vanama, A. Kumar, S.R. Ginjupalli, V.R.C. Komandur, Vapor-phase hydrogenolysis of glycerol over nanostructured Ru/MCM-41 catalysts, Catal. Today 250(2015) 226-238. [51] E.P. Reddy, L. Davydov, P.G. Smirniotis, Characterization of Titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV-Vis, Raman, and XPS techniques, J. Phys. Chem. B 106(2002) 3394-3401. [52] Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate:A potential electrode material for flexible all solid-state asymmetric supercapacitor, Chem. Eng. J. 362(2019) 818-829. [53] Y. Zhang, H. Jiang, Q. Wang, C. Meng, In-situ hydrothermal growth of Zn4Si2O7(OH)2·H2O anchored on 3D N, S-enriched carbon derived from plant biomass for flexible solid-state asymmetrical supercapacitors, Chem. Eng. J. 352(2018) 519-529. [54] Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng, C. Meng, Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid Supercapacitors, Chem. Eng. J. 375(2019) 121938. [55] T.H. Abreu, C.I. Meyer, C. Padro, L. Martins, Acidic V-MCM-41 catalysts for the liquidphase ketalization of glycerol with acetone, Microporous Mesoporous Mater. 273(2019) 219-225. [56] Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, Ammonium vanadium oxide[(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries, ACS Appl. Energy Mater. 2(2019) 7861-7869. [57] Y. Zhang, M. Chen, T. Hu, C. Meng, 3D interlaced networks of VO(OH)2 Nanoflakes wrapped with Graphene oxide Nanosheets as electrodes for energy storage devices, ACS Appl. Nano Mater. 2(2019) 2934-2945. [58] H. Jiang, Y. Zhang, L. Xu, Z. Gao, J. Zheng, Q. Wang, C. Meng, J. Wang, Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries, Chem. Eng. J. 382(2020) 122844. [59] J. Zheng, Y. Zhang, Q. Wang, H. Jiang, Y. Liu, T. Lv, C. Meng, Hydrothermal encapsulation of VO2(a) nanorods in amorphous carbon by carbonization of glucose for energy storage devices, Dalton Trans. 47(2018) 452-464. [60] R. Gallay, J.J. Vanderklink, J. Moser, Electron-paramagnetic-res study of vanadium (4+) in the ANATASE and rutile phases of TiO2, Phys. Rev. B 34(1986) 3060-3068. [61] A. Dinse, A. Ozarowski, C. Hess, R. Schomaecker, K.-P. Dinse, Potential of high-frequency EPR for investigation of supported vanadium oxide catalysts, J. Phys. Chem. C 112(2008) 17664-17671. [62] S. Chien, J. Ho, S. Mon, Hydrothermal synthesis and characterization of the vanadium-containing zeolite beta, Zeolites 18(1997) 182-187. [63] S.P.G. Centi, F. Trifirb, Physicochemical characterization of V-Silicaiite, J. Phys. Chem. 96(1992) 2617-2629. [64] R. Baran, Y. Millot, T. Onfroy, F. Averseng, J.-M. Krafft, S. Dzwigaj, Influence of the preparation procedure on the nature and environment of vanadium in VSiBEA zeolite:XRD, DR UV-vis, NMR, EPR and TPR studies, Microporous Mesoporous Mater. 161(2012) 179-186. [65] B. Guo, L. Zhu, X. Hu, Q. Zhang, D. Tong, G. Li, C. Hu, Nature of vanadium species on vanadium silicalite-1 zeolite and their stability in hydroxylation reaction of benzene to phenol, Catal. Sci. Technol. 1(2011) 1060-1067. [66] B. Solsona, T. Blasco, J.M. López Nieto, M.L. Peña, F. Rey, A. Vidal-Moya, Vanadium oxide supported on Mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes, J. Catal. 203(2001) 443-452. [67] C.N. Wu, T.S. Tsai, C.N. Liao, K.J. Chao, Controlling pore size distributions of MCM-41 by direct synthesis, Microporous Mater. 7(1996) 173-185. [68] C.W. Lee, W.J. Lee, Y.K. Park, S.-E. Park, Catalytic hydroxylation of benzene over vanadium-containing molecular sieves, Catal. Today 61(2000) 137-141. [69] B. Zhan, M.A. White, T. Sham, J.A. Pincock, R.J. Doucet, K.V.R. Rao, K.N. Robertson, T.S. Cameron, Zeolite-confined nano-RuO2:A green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc. 125(2003) 2195-2199. [70] A. Lou, L. Zhang, C. Zhang, Y. Liu, S. Liu, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts, J. Mol. Catal. A Chem. 306(2009) 123-129. [71] M. Zahmakıran, S. Özzkar, The preparation and characterization of gold (0) nanoclusters stabilized by zeolite framework:Highly active, selective and reusable catalyst in aerobic oxidation of benzyl alcohol, Mater. Chem. Phys. 121(2010) 359-363. [72] G. Wu, Y. Gao, F. Ma, B. Zheng, L. Liu, H. Sun, W. Wu, Catalytic oxidation of benzyl alcohol over manganese oxide supported on MCM-41 zeolite, Chem. Eng. J. 271(2015) 14-22. |
[1] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[2] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[3] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[4] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[5] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[6] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[7] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[8] | Fei Wang, Zhiyuan Bi, Lifeng Ding, Qingyuan Yang. Large-scale computational screening of metal–organic frameworks for D2/H2 separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 323-330. |
[9] | Yao Zhong, Cuiying Huang, Lijie Li, Qiang Deng, Jun Wang, Zheling Zeng, Shuguang Deng. Postsynthetic acid modification of amino-tagged metal-organic frameworks: Structure-functionrelationship for catalytic 5-hydroxymethylfurfural synthesis [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 245-252. |
[10] | Pascal Habimana, Yanjun Jiang, Jing Gao, Jean Bernard Ndayambaje, Osama M. Darwesh, Jean Pierre Mwizerwa, Xiaobing Zheng, Li Ma. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 66-75. |
[11] | Yu Zhang, Ling Zhao, Ziang Chen, Xinyong Li. Promotional effect for SCR of NO with CO over MnOx-doped Fe3O4 nanoparticles derived from metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 113-125. |
[12] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[13] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
[14] | Jun Chen, Liandong Li, Liu Yang, Chang Chen, Shitao Wang, Yan Huang, Dapeng Cao. A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 161-168. |
[15] | Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 222-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||