[1] S.S. Bukhari, J. Behin, H. Kazemian, S. Rohani, Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies:A review, Fuel 140(2015) 250-266. [2] C. Belviso, State-of-the-art applications of fly ash from coal and biomass:A focus on zeolite synthesis processes and issues, Prog Energy Combust 65(2018) 109-135. [3] X. Yao, K. Xu, Comparative study of characterization and utilization of corncob ashes from gasification process and combustion process, Constr. Build. Mater. 119(2016) 215-222. [4] F.H. Li, Y.T. Fang, Control Technology and Application of Coal Ash Melting Flow, Chemical Industry Press, Beijing, 2017. [5] C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chem. Rev. 114(3) (2014) 1673-1708. [6] C. Higman, M. Van der Burgt, Gasification, second ed. Elsevier Science, 2008. [7] F.C. Wang, Progress on the large-scale and high-efficiency entrained flow coal gasification technology, China Basic Science 10(3) (2008) 4-13. [8] J.H. Patterson, H.J. Hurst, A. Quintanar, The slag flow characteristics of Australian bituminous coals in Entrained-flow slagging gasifiers, Fuel 79(3) (2000) 1671-1678. [9] H. Zhang, J. Bai, L.X. Kong, Behavior of minerals in typical Shanxi coking coal during pyrolysis, Energy Fuel 29(2015) 6912-6919. [10] A. Magdziarz, M. Gajek, D. Nowak-Wozny, Mineral phase transformation of biomass ashes-Experimental and thermochemical calculations, Renew. Energy 128(2018) 446-459. [11] D. Boström, N. Skoglund, A. Grimm, Ash transformation chemistry during combustion of biomass, Energy Fuel 26(2012) 85-93. [12] L. Zhou, G. Zhang, M. Reinmöller, B. Meyer, Effect of inherent mineral matter on the copyrolysis of highly reactive brown coal and wheat straw, Fuel 239(2019) 1194-1203. [13] X.D. Chen, L.X. Kong, J. Bai, Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition, J. Fuel Chem. Technol. 44(3) (2016) 263-272. [14] W. Xuan, D. Xia, In situ minerals transformation study of low-temperature ash, Energy Fuel 32(1) (2018) 336-341. [15] S. Du, H. Yang, K. Qian, X. Wang, H. Chen, Fusion and transformation properties of the inorganic components in biomass ash, Fuel 117(2014) 1281-1287. [16] M. Reinmöller, M. Schreiner, S. Guhl, Formation and transformation of mineral phases in various fuels studied by different ashing methods, Fuel 202(2017) 641-649. [17] Y. Ge, D. Pan, S. Li, Effects and mechanism of calcium oxide on fusibility of high silicon-aluminum coal ash in Liupanshui, Coal Conversion 42(3) (2019) 63-74. [18] L. Wang, G.W. Wang, X.J. Ning, J.L. Zhang, Y.J. Li, C.H. Jiang, Effect of CaO mineral change on coal ash melting characteristics, J. Energy Inst. 93(2) (2020) 642-648. [19] X. Shao, D. Ma, H. Ding, Influences of minerals solid phase reaction on melting characteristics of coal ash in Haerwusu coal, Coal Conversion 42(3) (2019) 82-89. [20] J. Xu, X. Liu, Research on ash fusibility and viscosity-temperature characteristics of high-calcium Shanxin coal ash, Proceedings of the CSEE 33(20) (2013) 46-51. [21] E. Jak, Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package, Fuel 81(13) (2002) 1655-1668. [22] W.J. Song, L.H. Tang, X.D. Zhu, Y.Q. Wu, Y.Q. Rong, Z.B. Zhu, Fusibility and flow properties of coal ash and slag, Fuel 88(2) (2019) 297-304. [23] W. Xuan, K.J. Whitty, Q. Guan, D. Bi, Z. Zhan, J. Zhang, Influence of SiO2/Al2CO3 on crystallization characteristics of synthetic coal slags, Fuel 144(2015) 103-110. [24] W. Xuan, K.J. Whitty, Q. Guan, D. Bi, Z. Zhan, J. Zhang, Influence of Fe2O3 and atmosphere on crystallization characteristics of synthetic coal slags, Energy Fuel 29(1) (2015) 405-412. [25] D.H. Schwitalla, A.M. Bronsch, M. Klinger, S. Guhl, B. Meyer, Analysis of solid phase formation and its impact on slag rheology, Fuel 203(2017) 932-941. [26] M. Miao, H. Kong, M. Zhang, Y.X. Wu, H.R. Yang, J.S. Zhang, Ash fusion temperature and crystal composition of multi-component coal ash, CIESC Journal 70(8) (2019) 2909-2918. [27] W. Song, L. Tang, X. Zhu, Y. Wu, Y. Rong, Z. Zhu, Fusibility and flow properties of coal ash and slag, Fuel 88(2) (2009) 297-304. [28] M. Klinger, M. Schreiner, H. Gutte, Relationship between ash fusion temperatures of ashes from hard coal, brown coal, and biomass and mineral phases under different atmospheres:A combined FactSageTM computational and network theoretical approach, Fuel 151(2015) 118-123. [29] X. Chen, L.X. Kong, J. Bai, X. Dai, The key for sodium-rich coal utilization in entrained flow gasifier:The role of sodium on slag viscosity-temperature behavior at high temperatures, Appl. Energy 206(2017) 1241-1249. [30] L.X. Kong, J. Bai, Z. Bai, Z. Guo, W. Li, Improvement of ash flow properties of low-rank coal for entrained flow gasifier, Fuel 120(2014) 122-129. [31] S. Vargas, F.J. Frandsen, K. Dam-Johansen, Rheological properties of high-temperature melts of coal ashes and other silicates, Prog. Energy Combust. Sci. 27(2001) 237-429. [32] T. Yan, J. Bai, L.X. Kong, Improved prediction of critical-viscosity temperature by fusion behavior of coal ash, Fuel 253(2019) 1521-1530. [33] B.Q. Dai, X. Wu, A. De Girolamo, L. Zhang, Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler. Part 1. Changes on the properties of ash deposits along the furnace, Fuel 139(2015) 720-732. [34] J.Y. Zhang, Y.C. Zhao, C. Wei, B. Yao, C.G. Zheng, Mineralogy and microstructure of ash deposits from the Zhuzhou coal-fired power plant in China, Int. J. Coal Geol. 81(4) (2010) 309-319. [35] C. Wen, X. Gao, M. Xu, A CCSEM study on the transformation of included and excluded minerals during coal devolatilization and char combustion, Fuel 172(2016) 96-104. [36] L. Wen, W.X. Liang, Z.G. Zhang, J.C. Huang, The Infrared Spectroscopy of Minerals[M], Chongqing University Press, Chongqing, 1988. |