[1] T. Kucera, K. Urban, S. Ragkou, Healing of cavitary bone defects, Eur. J. Orthop. Surg. Traumatol. 22(2012) 123-128. [2] J.R. Jones, Reprint of:review of bioactive glass:from hench to hybrids, Acta Biomater. 23(2015) S53-S82. [3] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27(2006) 3413-3431. [4] L. Mosekilde, L. Mosekilde, Normal vertebral body size and compressive strength:relations to age and to vertebral and iliac trabecular bone compressive strength, Bone 7(1986) 207-212. [5] C. Bertoldi, D. Zaffe, U. Consolo, Polylactide/polyglycolide copolymer in bone defect healing in humans, Biomaterials 29(2008) 1817-1823. [6] B. Stevens, Y. Yang, A. Mohandas, B. Stucker, K.T. Nguyen, A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues, J Biomed Mater Res B Appl Biomater 85(2008) 573-582. [7] J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Deliv. Rev. 64(2012) 72-82. [8] K. Madhavan Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol. 101(2010) 8493-8501. [9] P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, An overview of poly(lactic-coglycolic) acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci. 15(2014) 3640-3659. [10] R.P.F. Lanao, A.M. Jonker, J.G.C. Wolke, J.A. Jansen, J.C.M. van Hest, S.C.G. Leeuwenburgh, Physicochemical properties and applications of poly(lactic-coglycolic acid) for use in bone regeneration, Tissue Eng. B Rev. 19(2013) 380-390. [11] H. Li, J. Chang, Preparation and characterization of bioactive and biodegradable Wollastonite/poly(D,L-lactic acid) composite scaffolds, J. Mater. Sci. Mater. Med. 15(2004) 1089-1095. [12] J.M. Lü, X. Wang, C. Marin-Muller, H. Wang, P.H. Lin, Q. Yao, C. Chen, Current advances in research and clinical applications of PLGA-based nanotechnology, Expert. Rev. Mol. Diagn. 9(2009) 325-341. [13] Z. Pan, J. Ding, Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine, Interface Focus 2(2012) 366-377. [14] S. Verrier, J.J. Blaker, V. Maquet, L.L. Hench, A.R. Boccaccini, PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering:an in vitro cell biology assessment, Biomaterials 25(2004) 3013-3021. [15] J. Zhang, S. Yang, X. Yang, Z. Xi, L. Zhao, L. Cen, E. Lu, Y. Yang, Novel fabricating process for porous polyglycolic acid scaffolds by melt-foaming using supercritical carbon dioxide, Acs Biomater. Sc. Eng. 4(2018) 694-706. [16] L. Goimil, M.E.M. Braga, A.M.A. Dias, J.L. Gómez-Amoza, A. Concheiro, C. AlvarezLorenzo, H.C. De Sousa, C.A. García-González, Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration, J. CO2 Utilization 18(2017) 237-249. [17] L. Goimil, V. Santos-Rosales, A. Delgado, C. Évora, R. Reyes, A.A. Lozano-Pérez, S.D. Aznar-Cervantes, J.L. Cenis, J.L. Gómez-Amoza, A. Concheiro, C. Alvarez-Lorenzo, C. A. García-González, ScCO2-foamed silk fibroin aerogel/poly(ε-caprolactone) scaffolds containing dexamethasone for bone regeneration, J. CO2 Utilization 31(2019) 51-64. [18] M. Rizwan, M. Hamdi, W.J. Basirun, Bioglass® 45S5-based composites for bone tissue engineering and functional applications, J Biomed Mater Res A 105(2017) 3197-3223. [19] C. Wu, Y. Ramaswamy, Y. Zhu, R. Zheng, R. Appleyard, A. Howard, H. Zreiqat, The effect of mesoporous bioactive glass on the physiochemical, biological and drugrelease properties of poly(DL-lactide-co-glycolide) films, Biomaterials 30(2009) 2199-2208. [20] V. Miguez-Pacheco, L.L. Hench, A.R. Boccaccini, Bioactive glasses beyond bone and teeth:emerging applications in contact with soft tissues, Acta Biomater. 13(2015) 1-15. [21] A.A. El-Rashidy, J.A. Roether, L. Harhaus, U. Kneser, A.R. Boccaccini, Regenerating bone with bioactive glass scaffolds:A review of in vivo studies in bone defect models, Acta Biomater. 62(2017) 1-28. [22] S. Chen, Z. Jian, L. Huang, W. Xu, S. Liu, D. Song, Z. Wan, A. Vaughn, R. Zhan, C. Zhang, S. Wu, M. Hu, J. Li, Mesoporous bioactive glass surface modified poly(lactic-coglycolic acid) electrospun fibrous scaffold for bone regeneration, Int. J. Nanomedicine 10(2015) 3815-3827. [23] T. Cheng, H. Qu, G. Zhang, X. Zhang, Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects, Artif. Cells, Nanomed., Biotechnol. 46(2018) 1935-1947. [24] C. Wu, J. Chang, Mesoporous bioactive glasses:structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus 2(2012) 292-306. [25] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(2005) 5474-5491. [26] F.S.L. Bobbert, A.A. Zadpoor, Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone, J. Mater. Chem. B 5(2017) 6175-6192. [27] S.S. Kim, K.M. Ahn, M.S. Park, J.H. Lee, C.Y. Choi, B.S. Kim, A poly(lactide-coglycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity, J Biomed Mater Res A 80(2007) 206-215. [28] L. Wu, H. Zhang, J. Zhang, J. Ding, Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold, Tissue Eng. 11(2005) 1105-1114. [29] G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials 25(2004) 4749-4757. [30] K. Cai, K. Yao, Z. Yang, Y. Qu, X. Li, Histological study of surface modified three dimensional poly (D, L-lactic acid) scaffolds with chitosan in vivo, J. Mater. Sci. Mater. Med. 18(2007) 2017-2024. [31] J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications, Biomaterials 30(2009) 4325-4335. [32] W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure:a novel scaffold for tissue engineering, J. Biomed. Mater. Res. 60(2002) 613-621. [33] H. Nie, C.H. Wang, Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA, J. Control. Release 120(2007) 111-121. [34] R.A. Quirk, R.M. France, K.M. Shakesheff, S.M. Howdle, Supercritical fluid technologies and tissue engineering scaffolds, Curr. Opinion Solid State Mater. Sci. 8(2004) 313-321. [35] D.L. Tomasko, H. Li, D. Liu, X. Han, M.J. Wingert, L.J. Lee, K.W. Koelling, A review of CO2 applications in the processing of polymers, Ind. Eng. Chem. Res. 42(2003) 6431-6456. [36] L.D. Harris, B.S. Kim, D.J. Mooney, Open pore biodegradable matrices formed with gas foaming, J. Biomed. Mater. Res. 42(1998) 396-402. [37] C.A. García-González, A. Concheiro, C. Alvarez-Lorenzo, Processing of materials for regenerative medicine using supercritical fluid technology, Bioconjug. Chem. 26(2015) 1159-1171. [38] E. Kiran, Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part I. Miscibility and foaming of poly(l-lactic acid) in carbon dioxide+acetone binary fluid mixtures, J. Supercrit. Fluids 54(2010) 296-307. [39] A. Salerno, S. Diéguez, L. Diaz-Gomez, J.L. Gómez-Amoza, B. Magariños, A. Concheiro, C. Domingo, C. Alvarez-Lorenzo, C.A. García-González, Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers, Biofabrication 9(2017), 035002. [40] S.E. Wright, D.A. Baron, J.E. Heffner, Intravenous eugenol causes hemorrhagic lung edema in rats:proposed oxidant mechanisms, J. Lab. Clin. Med. 125(1995) 257-264. [41] Y.M. Corre, A. Maazouz, J. Duchet, J. Reignier, Batch foaming of chain extended PLA with supercritical CO2:influence of the rheological properties and the process parameters on the cellular structure, J. Supercrit. Fluids 58(2011) 177-188. [42] G. Lemon, Y. Reinwald, L.J. White, S.M. Howdle, K.M. Shakesheff, J.R. King, Interconnectivity analysis of supercritical CO2-foamed scaffolds, Comput. Methods Prog. Biomed. 106(2012) 139-149. [43] Y. Reinwald, R.K. Johal, A.M. Ghaemmaghami, F.R.A.J. Rose, S.M. Howdle, K.M. Shakesheff, Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution, Polymer 55(2014) 435-444. [44] H. Tai, M.L. Mather, D. Howard, W. Wang, L.J. White, J.A. Crowe, S.P. Morgan, A. Chandra, D.J. Williams, S.M. Howdle, K.M. Shakesheff, Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing, Eur. Cells Mater 14(2007) 64-76. [45] E. Reverchon, S. Cardea, Supercritical fluids in 3-D tissue engineering, J. Supercrit. Fluids 69(2012) 97-107. [46] J.S. Colton, N.P. Suh, Nucleation of microcellular foam:theory and practice, Polymer Eng. Sci. 27(1987) 500-503. [47] Y. Zhu, C. Wu, Y. Ramaswamy, E. Kockrick, P. Simon, S. Kaskel, H. Zreiqat, Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering, Microporous Mesoporous Mater. 112(2008) 494-503. [48] C. Song, S. Li, J. Zhang, Z. Xi, E. Lu, L. Zhao, L. Cen, Controllable fabrication of porous PLGA/PCL bilayer membrane for GTR using supercritical carbon dioxide foaming, Appl. Surf. Sci. 472(2019) 82-92. [49] J.B. Bao, T. Liu, L. Zhao, G.H. Hu, X. Miao, X. Li, Oriented foaming of polystyrene with supercritical carbon dioxide for toughening, Polymer 53(2012) 5982-5993. [50] C.-X. Chen, Q.-Q. Liu, X. Xin, Y.-X. Guan, S.-J. Yao, Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming, J. Supercrit. Fluids 117(2016) 279-288. [51] J. Zhang, C. Song, Y. Han, Z. Xi, L. Zhao, L. Cen, Y. Yang, Regulation of inflammatory response to polyglycolic acid scaffolds through incorporation of sodium tripolyphosphate, Eur. Polym. J. 122(2020). [52] K.A. Arora, A.J. Lesser, T.J. McCarthy, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide, Macromolecules 31(1998) 4614-4620. [53] K.C. Baker, M. Manitiu, R. Bellair, C.A. Gratopp, H.N. Herkowitz, R.M. Kannan, Supercritical carbon dioxide processed resorbable polymer nanocomposite bone graft substitutes, Acta Biomater. 7(2011) 3382-3389. [54] J. Liuyun, X. Chengdong, J. Lixin, C. Dongliang, L. Qing, Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites, Mater. Res. Bull. 48(2013) 1233-1238. [55] A. Li, Y. Lv, H. Ren, Y. Cui, C. Wang, R.A. Martin, D. Qiu, In vitro evaluation of a novel pH neutral calcium phosphosilicate bioactive glass that does not require preconditioning prior to use, Int. J. Appl. Glas. Sci. 8(2017) 403-411. [56] I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution, J. Biomed. Mater. Res. 55(2001) 151-157. |