[1] R. Langer, J.P. Vacanti, Tissue Engineering, Science 260 (1993) 920-926.[2] J.R. Fuchs, B.A. Nasseri, J.P. Vacanti, Tissue engineering: A 21st century solution to surgical reconstruction, Ann. Thorac. Surg. 72 (2001) 577-591.[3] A. Khademhosseini, R. Langer, Microengineered hydrogels for tissue engineering, Biomaterials 28 (2007) 5087-5092.[4] H. Mertsching, J. Hansmann, Bioreactor Technology in Cardiovascular Tissue Engineering, in: C. Kasper, M. van Griensven, R. Portner (Eds.), Bioreactor Systems for Tissue Engineering, Springer, Berlin 2009, pp. 29-37.[5] E.S. Place, N.D. Evans, M.M. Stevens, Complexity in biomaterials for tissue engineering, Nat. Mater. 8 (2009) 457-470.[6] D.Wendt, S. Riboldi, M. Cioffi, I. Martin, Bioreactors in Tissue Engineering: Scientific Challenges and Clinical Perspectives, in: C. Kasper, M. van Griensven, R. Portner (Eds.), Bioreactor Systems for Tissue Engineering, Springer, Berlin 2009, pp. 1-27.[7] S. Viswanathan, P.W. Zandstra, Towards predictive models of stem cell fate, Cytotechnology 41 (2003) 75-92.[8] J.A. Burdick, G. Vunjak-Novakovic, Engineered microenvironments for controlled stem cell differentiation, Tissue Eng. Part A 15 (2009) 205-219.[9] I. Freshney, B. Obradovic, W. Grayson, C. Cannizzaro, G. Vunjak-Novakovic, Principles of tissue culture and bioreactor design, in: R. Lanza, R. Langer, J. Vacanti (Eds.), Principles of Tissue Engineering, Academic Press, San Diego 2007, pp. 155-184.[10] Z.F. Cui, X. Xu, N. Trainor, J.T. Triffitt, J.P.G. Urban, U.K. Tirlapur, Application of multiple parallel perfused microbioreactors and three-dimensional stem cell culture for toxicity testing, Toxicol. In Vitro 21 (2007) 1318-1324.[11] I. Martin, T. Smith, D.Wendt, Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products, Trends Biotechnol. 27 (2009) 495-502.[12] H. Singh, D. Hutmacher, Bioreactor studies and Computational Fluid Dynamics, in: C. Kasper,M. van Griensven, R. Portner (Eds.), Bioreactor Systems for Tissue Engineering, Springer, Berlin 2009, pp. 231-249.[13] M.N. Cinbiz, R.S. Tigli, I.G. Beskardes, M. Gumusderelioglu, U. Colak, Computational fluid dynamics modeling of momentumtransport in rotating wall perfused bioreactor for cartilage tissue engineering, J. Biotechnol. 150 (2010) 389-395.[14] L. Freed, G. Vujnak-Novakovic, Tissue Engineering Bioreactors, in: R. Lanza, R. Langer, J. Vacanti (Eds.), Principles of Tissue Engineering, Academic Press, San Diego 2000, pp. 143-156.[15] A.R. Patrachari, J.T. Podichetty, S.V. Madihally, Application of computational fluid dynamics in tissue engineering, J. Biosci. Bioeng. 114 (2012) 123-132.[16] H. Kaul, Z. Cui, Y. Ventikos, A multi-paradigm modeling framework to simulate dynamic reciprocity in a bioreactor, PLoS One 8 (2013) e59671, http://dx.doi.org/10. 1371/journal.pone.0059671.[17] M.J. Song, D. Dean, M.L.K. Tate, In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale, PLoS One 5 (2010) e12796, http://dx.doi.org/10.1371/journal.pone.0012796.[18] M. Cioffi, F. Boschetti,M.T. Raimondi, G. Dubini,Modeling evaluation of the fluid-dynamicmicroenvironment in tissue-engineered constructs: Amicro-CT basedmodel, Biotechnol. Bioeng. 93 (2006) 500-510.[19] F. Maes, P. van Ransbeeck, H. van Oosterwyck, P. Verdonck, Modeling Fluid Flow Through Irregular Scaffolds for Perfusion Bioreactors, Biotechnol. Bioeng. 103 (2009) 621-630.[20] B. Bilgen, G.A. Barabino, Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues, Biotechnol. Bioeng. 98 (2007) 282-294.[21] K.A.Williams, S. Saini, T.M.Wick, Computational fluid dynamicsmodeling of steadystatemomentumandmass transport in a bioreactor for cartilage tissue engineering, Biotechnol. Prog. 18 (2002) 951-963.[22] F. Consolo, G.B. Fiore, S. Truscello, M. Caronna, U. Morbiducci, F.M. Montevecchi, A. Redaelli, A computational model for the optimization of transport phenomena in a rotating hollow-fiber bioreactor for artificial liver, Tissue Eng. Part C 15 (2009) 41-55.[23] M.T. Raimondi, F. Boschetti, L. Falcone, F. Migliavacca, A. Remuzzi, G.Dubini, The effect of media perfusion on three-dimensional cultures of human chondrocytes: Integration of experimental and computational approaches, Biorheology 41 (2004) 401-410.[24] F. Boschetti, M.T. Raimondi, F. Migliavacca, G. Dubini, Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors, J. Biomech. 39 (2006) 418-425.[25] P. Yu, T. Lee, Y. Zeng, H.T. Low, A 3D analysis of oxygen transfer in a low-cost microbioreactor for animal celll suspension culture, Comput. Methods Prog. Biomed. 85 (2007) 59-68.[26] H. Singh, S.H. Teoh, H.T. Low, D.W. Hutmacher, Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation, J. Biotechnol. 119 (2005) 181-196.[27] T. Yi-Chin, Z. Chi, Z. Jing, K. Yuet Mei, C. Shi, V.D. Samper, D. van Noort, D.W. Hutmacher, H. Yu, A novel 3D mammalian cell perfusion-culture system in microfluidic channels, Lab Chip 7 (2007) 302-309.[28] J.J. Casciari, S.V. Sotirchos, R.M. Sutherland, Glucose diffusivity inmulticellular tumor spheroids, Cancer Res. 48 (1988) 3905-3909.[29] J.A. Teixeira, M. Mota, A. Venancio, Model identification and diffusion coefficients determination of glucose and malic acid in calcium alginate membranes, Chem. Eng. J. 56 (1994) B9-B14.[30] O. Smidsrod, G. Skjakbraek, Alginate as immobilization matrix for cells, Trends Biotechnol. 8 (1990) 71-78.[31] T.N. Julian, G.W. Radebaugh, S.J.Wisniewski, Permeability characteristics of calcium alginate films, J. Control. Release 7 (1988) 165-169.[32] J.E. Melvik,M. Dornish, Alginate as a carrier for cell immobilisation, in: V. Nedovic, R. Willaert (Eds.), Fundamentals of Cell Immobilisation Biotechnology, 8A, Springer, Dordrecht 2004, pp. 33-51.[33] M. Khalil, A. Shariat-Panahi, R. Tootle, T. Ryder, P.McCloskey, E. Roberts, H. Hodgson, C. Selden, Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function, J. Hepatol. 34 (2001) 68-77.[34] W.R. Gombotz, S.F.Wee, Protein release from alginate matrices, Adv. Drug Deliv. Rev. 31 (1998) 267-285.[35] C.H. Goh, P.W.S. Heng, L.W. Chan, Alginates as a useful natural polymer formicroencapsulation and therapeutic applications, Carbohydr. Polym. 88 (2012) 1-12.[36] G. Pattappa, H.K. Heywood, J.D. de Bruijn, D.A. Lee, The metabolism of human mesenchymal stem cells during proliferation and differentiation, J. Cell. Physiol. 226 (2011) 2562-2570.[37] J.P. van Doormaal, G.D. Raithby, Enhancements of the simple method for predicting incompressible fluid-flows, Numer. Heat Transfer 7 (1984) 147-163.[38] S.V. Patankar, D.B. Spalding, Calculation procedure for heat, mass and momentumtransfer in 3-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1806.[39] B.R. Hutchinson, P.F. Galpin, G.D. Raithby, Application of additive correction multigrid to the coupled fluid flow equations, Numer. Heat Transfer 13 (1988) 133-147.[40] R.L. Carrier, M. Rupnick, R. Langer, F.J. Schoen, L.E. Freed, G. Vunjak-Novakovic, Perfusion improves tissue architecture of engineered cardiac muscle, Tissue Eng. 8 (2002) 175-188.[41] P. Vermette, Y. Martin, Bioreactors for tissue mass culture: Design, characterization, and recent advances, Biomaterials 26 (2005) 481-503.[42] B. Imberti, D. Seliktar, R.M. Nerem, A. Remuzzi, The response of endothelial cells to fluid shear stress using a co-culturemodel of the arterial wall, Endothelium 9 (2002) 11-23.[43] S.H. Mardikar, K. Niranjan, Observations on the shear damage to different animal cells in a concentric cylinder viscometer, Biotechnol. Bioeng. 68 (2000) 697-704.[44] T.M. Maul, D.W. Chew, A. Nieponice, D.A. Vorp, Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation, Biomech. Model. Mechanobiol. 10 (2011) 939-953.[45] K. Yamamoto, T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, J. Ando, Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, J. Appl. Physiol. 95 (2003) 2081-2088.[46] G. Yourek, S.M. McCormick, J.J. Mao, G.C. Reilly, Shear stress induces osteogenic differentiation of human mesenchymal stem cells, Regen. Med. 5 (2010) 713-724.[47] B. Weyand, M. Israelowitz, H. von Schroeder, P. Vogt, Fluid Dynamics in Bioreactor Design: Considerations for the Theoretical and Practical Approach, in: C. Kasper, M. van Griensven, R. Portner (Eds.), Bioreactor Systems for Tissue Engineering, Springer, Berlin 2009, pp. 251-268.[48] S. Chien, Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell, Am. J. Physiol. Heart Circ. Physiol. 292 (2007) H1209-H1224.[49] G. Vunjak-Novakovic, L. Meinel, G. Altman, D. Kaplan, Bioreactor cultivation of osteochondral grafts, Orthod. Craniofacial Res. 8 (2005) 209-218.[50] M.R. Kreke, W.R. Huckle, A.S. Goldstein, Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner, Bone 36 (2005) 1047-1055.[51] V.I. Sikavitsas, G.N. Bancroft, H.L. Holtorf, J.A. Jansen, A.G. Mikos, Mineralized matrix deposition bymarrow stromal osteoblasts in 3D perfusion culture increaseswith increasing fluid shear forces, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 14683-14688.[52] Y.C. Wang, T. Uemura, R. Dong, H. Kojima, J. Tanaka, T. Tateishi, Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrowderived osteoblastic cells in porous ceramic materials, Tissue Eng. 9 (2003) 1205-1214.[53] X.J. Yu, E.A. Botchwey, E.M. Levine, S.R. Pollack, C.T. Laurencin, Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 11203-11208.[54] C.Y.J. Ma, R. Kumar, X.Y. Xu, A. Mantalaris, A combined fluid dynamics, mass transport and cell growthmodel for a three-dimensional perfused biorector for tissue engineering of haematopoietic cells, Biochem. Eng. J. 35 (2007) 1-11.[55] L.D. Garza-Garcia, L.M. Carrillo-Cocom, D. Araiz-Hernandez, P. Soto-Vazquez, J. Lopez-Meza, E.J. Tapia-Mejia, S. Camacho-Leon, E. Garcia-Lopez, C.A. Rodriguez- Gonzalez,M.M. Alvarez, A biopharmaceutical plant on a chip: continuous micro-devices for the production of monoclonal antibodies, Lab Chip 13 (2013) 1243-1246.[56] R. Sodian, T. Lemke, M. Loebe, S.P. Hoerstrup, E.V. Potapov, H. Hausmann, R. Meyer, R. Hetzer, New pulsatile bioreactor for fabrication of tissue-engineered patches, J. Biomed. Mater. Res. 58 (2001) 401-405.[57] B.R. Unsworth, P.I. Lelkes, Growing tissues in microgravity, Nat. Med. 4 (1998) 901-907. |