[1] C.Q. Tan, X. Lu, X.X. Cui, X.C. Jian, Z.X. Hu, Y.J. Dong, X.Y. Liu, J. Huang, L. Deng, Novel activation of peroxymonosulfate by an easily recyclable VC@Fe3O4 nanoparticles for enhanced degradation of sulfadiazine, Chem. Eng. J. 363 (2019) 318-328. [2] X.M. Xu, L.J. Meng, Y.X. Dai, M. Zhang, C. Sun, S.G. Yang, H. He, S.M. Wang, H. Li, Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II), J. Hazard. Mater. 381 (2020) 120953. [3] C.Q. Tan, X.C. Jian, Y.J. Dong, X. Lu, X.Y. Liu, H.M. Xiang, X.X. Cui, J. Deng, H.Y. Gao, Activation of peroxymonosulfate by a novel EGCE@Fe3O4 nanocomposite: free radical reactions and implication for the degradation of sulfadiazine, Chem. Eng. J. 359 (2019) 594-603. [4] W.Q. Guo, Q. Zhao, J.S. Du, H.Z. Wang, X.F. Li, N.Q. Ren, Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: Performance, mechanisms and degradation pathways, Chem. Eng. J. 388 (2020) 124303. [5] Y.B. Ding, X.R. Wang, L.B. Fu, X.Q. Peng, C. Pan, Q.H. Mao, C.J. Wang, J.C. Yan, Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective, Sci. Total Environ. 765 (2021) 142794. [6] J. Lee, U. von Gunten, J.H. Kim, Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks, Environ. Sci. Technol. 54 (6) (2020) 3064-3081. [7] Y.J. Li, J. Li, Y.T. Pan, Z.K. Xiong, G. Yao, R.Z. Xie, B. Lai, Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole, Chem. Eng. J. 384 (2020) 123361. [8] X.J. Li, F.Z. Liao, L.M. Ye, L. Yeh, Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: Catalytic performance and mechanism, J. Hazard. Mater. 398 (2020) 122938. [9] C.Y. Ma, Y.J. Guo, D.F. Zhang, Y.H. Wang, N.N. Li, D.A. Ma, Q. Ji, Z.H. Xu, Metal-nitrogen-carbon catalysts for peroxymonosulfate activation to degrade aquatic organic contaminants: Rational design, size-effect description, applications and mechanisms, Chem. Eng. J. 454 (2023) 140216. [10] J.J. He, Y. Wan, W.J. Zhou, ZIF-8 derived Fe-N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: Role of FeNx sites, J. Hazard. Mater. 405 (2021) 124199. [11] W.Y. Du, Q.Z. Zhang, Y.N. Shang, W. Wang, Q. Li, Q.Y. Yue, B.Y. Gao, X. Xu, Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation, Appl. Catal. B Environ. 262 (2020) 118302. [12] Z.M. Ma, T. Song, Y.Z. Yuan, Y. Yang, Synergistic catalysis on Fe-Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes, Chem. Sci. 10 (44) (2019) 10283-10289. [13] W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z.D. Wei, L.J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N(x), J. Am. Chem. Soc. 138 (10) (2016) 3570-3578. [14] K. Strickland, E. Miner, Q.Y. Jia, U. Tylus, N. Ramaswamy, W.T. Liang, M.T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination, Nat. Commun. 6 (2015) 7343. [15] B. Sheng, F. Yang, Y.H. Wang, Z.H. Wang, Q. Li, Y.G. Guo, X.Y. Lou, J.S. Liu, Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS, Chem. Eng. J. 375 (2019) 121989. [16] Y.D. Chen, Y. Shao, L. Ouyang, J.M. Liang, S.Q. Tang, Z.S. Li, WS2-cocatalyzed peroxymonosulfate activation via an enhanced Fe(III)/Fe(II) cycle toward efficient organic pollutant degradation, Chem. Eng. J. 442 (2022) 135961. [17] H.S. Liu, N.N. Han, J.J. Zhao, Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties, RSC Adv. 5 (23) (2015) 17572-17581. [18] Y. Xiong, H.C. Li, C.W. Liu, L.R. Zheng, C. Liu, J.O. Wang, S.J. Liu, Y.H. Han, L. Gu, J.S. Qian, D.S. Wang, Single-atom Fe catalysts for Fenton-like reactions: roles of different N species, Adv. Mater. 34 (17) (2022) e2110653. [19] W. Song, X.Y. Xiao, G.L. Wang, X.L. Dong, X.F. Zhang, Highly efficient peroxymonosulfate activation on Fe-N-C catalyst via the collaboration of low-coordinated Fe-N structure and Fe nanoparticles for enhanced organic pollutant degradation, J. Hazard. Mater. 455 (2023) 131596. [20] J.H. Ji, R.M. Aleisa, H. Duan, J.L. Zhang, Y.D. Yin, M.Y. Xing, Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal, iScience 23 (2) (2020) 100861. [21] X.L. Han, N.N. Wang, W. Zhang, X.D. Liu, Q. Yu, J.Y. Lei, L. Zhou, G.L. Xiu, Ascorbic acid promoted sulfamethoxazole degradation in MIL-88B(Fe)/H2O2 Fenton-like system, J. Environ. Chem. Eng. 11 (1) (2023) 109144. [22] W. Ren, C. Cheng, P.H. Shao, X.B. Luo, H. Zhang, S.B. Wang, X.G. Duan, Origins of electron-transfer regime in persulfate-based nonradical oxidation processes, Environ. Sci. Technol. 56 (1) (2022) 78-97. [23] K. Guesh, C.A.D. Caiuby, M. Sanchez-Sanchez, Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water, Cryst. Growth Des. 17 (4) (2017) 1806-1813. [24] A.L. Cazetta, T. Zhang, T.L. Silva, V.C. Almeida, T. Asefa, Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation, Appl. Catal. B Environ. 225 (2018) 30-39. [25] C. Liu, Y.P. Wang, Y.T. Zhang, R.Y. Li, W.D. Meng, Z.L. Song, F. Qi, B.B. Xu, W. Chu, D.H. Yuan, B. Yu, Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: Incorporation NH2-group into structure of its MOF precursor, Chem. Eng. J. 354 (2018) 835-848. [26] N.N. Wu, D.M. Xu, Z. Wang, F.L. Wang, J.R. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z.H. Guo, Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods, Carbon 145 (2019) 433-444. [27] J.B. Dou, Y. Tang, Z.J. Lu, G.Z. He, J.M. Xu, Y. He, Neglected but efficient electron utilization driven by biochar-coactivated phenols and peroxydisulfate: polyphenol accumulation rather than mineralization, Environ. Sci. Technol. 57 (14) (2023) 5703-5713. [28] X.Y. Qiu, X.H. Yan, H. Pang, J.C. Wang, D.M. Sun, S.H. Wei, L. Xu, Y.W. Tang, Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction, Adv. Sci. 6 (2) (2018) 1801103. [29] Y.C. Ou, L.X. Yao, Y.C. Li, C.H. Bai, R. Luque, G.X. Peng, Magnetically separable Fe-MIL-88B_NH2 carbonaceous nanocomposites for efficient removal of sulfamethoxazole from aqueous solutions, J. Colloid Interface Sci. 570 (2020) 163-172. [30] X.J. Yin, Y.H. Peng, J.J. Luo, X.Y. Zhou, C.M. Gao, L. Wang, C.L. Yang, Tailoring the framework of organic small molecule semiconductors towards high-performance thermoelectric composites via conglutinated carbon nanotube webs, J. Mater. Chem. A 6 (18) (2018) 8323-8330. [31] Z.Y. Yang, T.S. Zhao, X.X. Huang, X. Chu, T.Y. Tang, Y.M. Ju, Q. Wang, Y.L. Hou, S. Gao, Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions, Chem. Sci. 8 (1) (2017) 473-481. [32] Y.T. Wan, W. Zhang, X.L. Han, L. Zhou, H.J. Zhen, C.Z. Wu, Q. Yu, G.L. Xiu, B, N-decorated carbocatalyst based on Fe-MOF/BN as an efficient peroxymonosulfate activator for bisphenol A degradation, J. Hazard. Mater. 430 (2022) 127832. [33] Y.J. Wan, J.Q. Wan, J.R. Zhao, Y. Wang, T. Luo, S. Yang, Y.X. Liu, Facile preparation of iron oxide doped Fe-MOFs-MW as robust peroxydisulfate catalyst for emerging pollutants degradation, Chemosphere 254 (2020) 126798. [34] J. Tong, L. Chen, J. Cao, Z.H. Yang, W.P. Xiong, M.Y. Jia, Y.P. Xiang, H.H. Peng, Biochar supported magnetic MIL-53-Fe derivatives as an efficient catalyst for peroxydisulfate activation towards antibiotics degradation, Sep. Purif. Technol. 294 (2022) 121064. [35] D.M. Ma, Y. Yang, B.F. Liu, G.J. Xie, C. Chen, N.Q. Ren, D.F. Xing, Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation, Chem. Eng. J. 408 (2021) 127992. [36] C.Y. Du, Y. Zhang, Z. Zhang, D.M. Song, J. Cao, H.B. Yu, G.L. Yu, L. Zhou, Y.H. Su, Y.C. Lv, H. Zhu, F.F. Deng, Highly efficient removal of oxytetracycline using activated magnetic MIL-101(Fe)/γ-Fe2O3 heterojunction catalyst, J. Environ. Manage. 317 (2022) 115327. [37] H.Z. Wang, W.Q. Guo, B.H. Liu, Q.L. Wu, H.C. Luo, Q. Zhao, Q.S. Si, F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism, Water Res. 160 (2019) 405-414. [38] W.L. Wang, Q.Y. Wu, N. Huang, T. Wang, H.Y. Hu, Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species, Water Res. 98 (2016) 190-198. [39] S.S. Zhu, X.C. Huang, F. Ma, L. Wang, X.G. Duan, S.B. Wang, Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms, Environ. Sci. Technol. 52 (15) (2018) 8649-8658. [40] H.Z. Wang, W.Q. Guo, R.L. Yin, J.S. Du, Q.L. Wu, H.C. Luo, B.H. Liu, F. Sseguya, N.Q. Ren, Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways, Chem. Eng. J. 362 (2019) 561-569. [41] L. Wang, L.B. Peng, L.L. Xie, P.Y. Deng, D.Y. Deng, Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation, Environ. Sci. Technol. 51 (12) (2017) 7055-7064. [42] C.J. Liang, C.P. Liang, C.C. Chen, pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene, J. Contam. Hydrol. 106 (3-4) (2009) 173-182. [43] G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol. 38 (13) (2004) 3705-3712. [44] A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal. B Environ. 85 (3-4) (2009) 171-179. [45] J. Sun, J.Q. Wan, Y. Wang, Z.C. Yan, Y.W. Ma, S. Ding, M. Tang, Y.C. Xie, Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole: Design, degradation pathways, and mechanism, J. Hazard. Mater. 429 (2022) 128299. [46] B.X. Gao, S.M. Zhu, J.L. Gu, Y. Liu, X.L. Yi, H. Zhou, Superoxide radical mediated Mn(III) formation is the key process in the activation of peroxymonosulfate (PMS) by Mn-incorporated bacterial-derived biochar, J. Hazard. Mater. 431 (2022) 128549. |