[1] A.M. Myers, M.A. Painter, Food insecurity in the United States of America: an examination of race/ethnicity and nativity, Food Secur. 9 (6) (2017) 1419-1432. [2] Z. Mohammadi, S.M. Jafari, Detection of food spoilage and adulteration by novel nanomaterial-based sensors, Adv. Colloid Interface Sci. 286 (2020) 102297. [3] A. Bahrami, R. Delshadi, E. Assadpour, S.M. Jafari, L. Williams, Antimicrobial-loaded nanocarriers for food packaging applications, Adv. Colloid Interface Sci. 278 (2020) 102140. [4] W.X. Peng, X. Yue, H. Chen, N.L. Ma, Z. Quan, Q. Yu, Z. Wei, R. Guan, S.S. Lam, J. Rinklebe, D. Zhang, B. Zhang, N. Bolan, M.B. Kirkham, C. Sonne, A review of plants formaldehyde metabolism: Implications for hazardous emissions and phytoremediation, J. Hazard. Mater. 436 (2022) 129304. [5] B.K.K.K. Jinadasa, C. Elliott, G.D.T.M. Jayasinghe, A review of the presence of formaldehyde in fish and seafood, Food Contr. 136 (2022) 108882. [6] K.I. Greenberg, M.J. Choi, Hemodialysis emergencies: core curriculum 2021, Am. J. Kidney Dis. 77 (5) (2021) 796-809. [7] X.X. Li, Y.H. Gao, P.H. Deng, X.P. Ren, S. Teng, Determination of four PAHs and formaldehyde in traditionally smoked chicken products, Molecules 28 (13) (2023) 5143. [8] F. Mabruroh, R. Ciptaningtyas, Analysis of Food Poisoning in DKI Jakarta 2016 (Indonesian National Agency Drug and Food Control), In: Proceedings of the 2nd Public Health International Conference (PHICo 2017), Adv. Health Sci. Res. 9 (2018) 28-35. [9] V. Delbono, C.P. Larch, K.C. Newlands, S. Rhydderch, T.C. Baddeley, J.M.D. Storey, Novel method of analysis for the determination of residual formaldehyde by high-performance liquid chromatography, Int. J. Anal. Chem. 2022 (2022) 9171836. [10] N. Kilic, A.G. Kilic, An attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic study of waterlogged woods treated with melamine formaldehyde, Vib. Spectrosc. 105 (2019) 102985. [11] M.I.S. Verissimo, J.A.F. Gamelas, A.J.S. Fernandes, D.V. Evtuguin, M. Teresa S R Gomes, A new formaldehyde optical sensor: Detecting milk adulteration, Food Chem. 318 (2020) 126461. [12] J.J. Park, Y. Kim, C. Lee, J.W. Kook, D. Kim, J.H. Kim, K.S. Hwang, J.Y. Lee, Colorimetric visualization using polymeric core-shell nanoparticles: enhanced sensitivity for formaldehyde gas sensors, Polymers 12 (5) (2020) 998. [13] M. Nurdin, M. Maulidiyah, A.H. Watoni, A. Armawansa, L.O.A. Salim, Z. Arham, D. Wibowo, I. Irwan, A. Ali Umar, Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection, Korean J. Chem. Eng. 39 (1) (2022) 209-215. [14] M. Nurdin, Z. Arham, J. Rasyid, M. Maulidiyah, F. Mustapa, H. Sosidi, R. Ruslan, L.A. Salim, Electrochemical performance of carbon paste electrode modified TiO2/Ag-Li (CPE-TiO2/Ag-Li) in determining fipronil compound, J. Phys.: Conf. Ser. 1763 (1) (2021) 012067. [15] X.Q. Hu, J. Huang, Y. Cao, B. He, X. Cui, Y.H. Zhu, Y. Wang, Y.H. Chen, Y.K. Yang, Z. Li, X.Q. Liu, Photothermal-boosted polaron transport in Fe2O3 photoanodes for efficient photoelectrochemical water splitting, Carbon Energy 5 (9) (2023) e369. [16] F. Gu, W.G. Guo, Y.F. Yuan, Y.P. Deng, H.L. Jin, J.C. Wang, Z.W. Chen, S. Pan, Y.H. Chen, S. Wang, External field-responsive ternary non-noble metal oxygen electrocatalyst for rechargeable zinc-air batteries, Adv. Mater. 36 (19) (2024) 2313096. [17] X.Y. Zhang, S. Pan, H.H. Song, W.G. Guo, F. Gu, C.Z. Yan, H.L. Jin, L.J. Zhang, Y.H. Chen, S. Wang, Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn-air batteries, J. Mater. Chem. A 9 (35) (2021) 19734-19740. [18] D. Yihuang Chen, Z.W. Wang, Y.W. Harn, D. Shuang Pan, D. Zili Li, P. Shaoliang Lin, P. Juan Peng, P. Guangzhao Zhang, P. Zhiqun Lin, Resolving optical and catalytic activities in thermoresponsive nanoparticles by permanent ligation with temperature-sensitive polymers, Angew. Chem. Int. Ed. 58 (34) (2019) 11910-11917. [19] B.W. Wu, L.X. Xiao, M.J. Zhang, C. Yang, Q. Li, G.L. Li, Q.G. He, J. Liu, Facile synthesis of dendritic-like CeO2/rGO composite and application for detection of uric acid and tryptophan simultaneously, J. Solid State Chem. 296 (2021) 122023. [20] S.Q. Zhang, P.D. Ling, Y. Chen, J. Liu, C. Yang, 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection, Diam. Relat. Mater. 135 (2023) 109811. [21] M. Nurdin, Z. Arham, W.O. Irna, M. Maulidiyah, K. Kurniawan, L.O.A. Salim, I. Irwan, A. Ali Umar, Enhanced-charge transfer over molecularly imprinted polyaniline modified graphene/TiO2 nanocomposite electrode for highly selective detection of fipronil insecticide, Mater. Sci. Semicond. Process. 151 (2022) 106994. [22] A.A. Umar, M.Y.A. Rahman, S.K.M. Saad, M.M. Salleh, M. Oyama, Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature, Appl. Surf. Sci. 270 (2013) 109-114. [23] S.K.M. Saad, A. Ali Umar, M.Y.A. Rahman, M.M. Salleh, Porous Zn-doped TiO2 nanowall photoanode: effect of Zn2+ concentration on the dye-sensitized solar cell performance, Appl. Surf. Sci. 353 (2015) 835-842. [24] A. Ali Umar, S.K. Md Saad, M.I. Ali Umar, M.Y.A. Rahman, M. Oyama, Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures, Opt. Mater. 75 (2018) 390-430. [25] M. Natsir, Y.I. Putri, D. Wibowo, M. Maulidiyah, L.O.A. Salim, T. Azis, C.M. Bijang, F. Mustapa, I. Irwan, Z. Arham, M. Nurdin, Effects of Ni-TiO2 pillared clay-montmorillonite composites for photocatalytic enhancement against reactive orange under visible light, J. Inorg. Organomet. Polym. Mater. 31 (8) (2021) 3378-3388. [26] T. Azis, M. Maulidiyah, M.Z. Muzakkar, R. Ratna, S.W. Aziza, C.M. Bijang, L.O. Agus Salim, O.A. Prabowo, D. Wibowo, M. Nurdin, Examination of carbon paste electrode/TiO2 nanocomposite as electrochemical sensor for detecting profenofos pesticide, Surf. Eng. Appl. Electrochem. 57 (3) (2021) 387-396. [27] L.O.A. Salim, M.Z. Muzakkar, A. Zaeni, M. Maulidiyah, M. Nurdin, S.N. Sadikin, J. Ridwan, A. Ali Umar, Improved photoactivity of TiO2 photoanode of dye-sensitized solar cells by sulfur doping, J. Phys. Chem. Solids 175 (2023) 111224. [28] M. Nurdin, M. Maulidiyah, L.O.A. Salim, M.Z. Muzakkar, A. Ali Umar, High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode, Microchem. J. 145 (2019) 756-761. [29] M.Z. Muzakkar, T. Azis, M.P. Rajiani, M. Maulidiyah, I. Irwan, F. Mustapa, L.A. Salim, M. Nurdin, The effect of calcogenate sulfur on the performance of the S-TiO2/Ti electrode as a photoelectrocatalytic sensor for phenolic compounds, J. Phys.: Conf. Ser. 1763 (1) (2021) 012069. [30] M. Nurdin, O.A. Prabowo, Z. Arham, D. Wibowo, M. Maulidiyah, S.K.M. Saad, A. Ali Umar, Highly sensitive fipronil pesticide detection on ilmenite (FeO.TiO2)-carbon paste composite electrode, Surf. Interfaces 16 (2019) 108-113. [31] N. Belkhamsa, L. Ouattara, M. Ksibi, Voltammetric monitoring of Pb (II) by TiO2Modified carbon paste electrode, J. Electrochem. Soc. 162 (8) (2015) B212-B216. [32] M.M. Charithra, J.G. Manjunatha, Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor, J. Electrochem. Sci. Eng. 10 (1) (2019) 29-40. [33] M. Maulidiyah, T. Azis, L. Lindayani, D. Wibowo, L.O.A. Salim, A. Aladin, M. Nurdin, Sol-gel TiO2/carbon paste electrode nanocomposites for electrochemical-assisted sensing of fipronil pesticide, J. Electrochem. Sci. Technol 10 (4) (2019) 394-401. [34] Y.F. Wang, D.L. Liu, J.J. Han, A.R. Guo, Detection of formaldehyde by cyclic voltammetry using a PANI/GO composite film-modified electrode, Ionics 28 (5) (2022) 2457-2468. [35] G.F. Pinto, D.P. Rocha, E.M. Richter, R.A.A. Munoz, S.G. Silva, Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3, 5-diacetyl-1, 4-dihydrolutidine using an unmodified glassy-carbon electrode, Talanta 198 (2019) 237-241. [36] M. Nurdin, L. Agusu, A.A.M. Putra, M. Maulidiyah, Z. Arham, D. Wibowo, M.Z. Muzakkar, A. Ali Umar, Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection, J. Phys. Chem. Solids 131 (2019) 104-110. [37] E. Tesfaye, B.S. Chandravanshi, N. Negash, M. Tessema, A new modified carbon paste electrode using N1-hydroxy-N1, N2-diphenylbenzamidine for the square wave anodic stripping voltammetric determination of Pb(II) in environmental samples, Sens. Bio Sens. Res. 38 (2022) 100520. [38] N. Bashir, M. Akhtar, H.Z.R. Nawaz, D. Muhammad Farooq Warsi, D. Imran Shakir, D. Philips O Agboola, D. Sonia Zulfiqar, A high performance electrochemical sensor for Pb2+ ions based on carbon nanotubes functionalized CoMn2O4 nanocomposite, ChemistrySelect 5 (26) (2020) 7909-7918. |