[1] J.H. Xu, Y.R. Guan, J. Oldfield, D.B. Guan, Y.L. Shan, China carbon emission accounts 2020-2021, Appl. Energy 360 (2024) 122837. [2] S.K. Shukla, Y.L. Wang, A. Laaksonen, X.Y. Ji, Superior gravimetric CO2 uptake of aqueous deep-eutectic solvent solutions, Chem. Commun. 59 (70) (2023) 10516-10519. [3] Y. Wang, J.F. Xiao, H.Z. Wang, T.C. Zhang, S.J. Yuan, Binary doping of nitrogen and phosphorus into porous carbon: a novel di-functional material for enhancing CO2 capture and super-capacitance, J. Mater. Sci. Technol. 99 (2022) 73-81. [4] K.O. Yoro, M.O. Daramola, P.T. Sekoai, E.K. Armah, U.N. Wilson, Advances and emerging techniques for energy recovery during absorptive CO2 capture: a review of process and non-process integration-based strategies, Renew. Sustain. Energy Rev. 147 (2021) 111241. [5] X.X. Zhao, Y.D. Ding, L.J. Ma, X. Zhu, H. Wang, M. Cheng, Q. Liao, An amine-functionalized strategy to enhance the CO2 absorption of type III porous liquids, Energy 279 (2023) 127975. [6] Y.D. Ding, X.X. Zhao, Y.S. Qin, X. Zhu, M. Cheng, H. Wang, Q. Liao, Desorption research and energy consumption assessment of a porous liquids impregnated by monoethanolamine (MEA), Sep. Purif. Technol. 325 (2023) 124626. [7] L.A. Blanchard, H.C. Dan, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399 (6731) (1999) 28-29. [8] P.H. Zhang, P.Y. Yin, L.F. Yang, X.L. Cui, H.B. Xing, X. Suo, Recent advances and challenges in ionic materials for post-combustion carbon capture, Carbon Capture Sci. Technol. 11 (2024) 100180. [9] Z.J. Zhao, Y. Huang, Z.H. Zhang, W.Y. Fei, M.S. Luo, Y.S. Zhao, Experimental and simulation study of CO2 and H2S solubility in propylene carbonate, imidazolium-based ionic liquids and their mixtures, J. Chem. Thermodyn. 142 (2020) 106017. [10] T. Song, W.Q. Chen, Y.C. Zhang, G.H. Situ, F. Liu, Y. Shen, W.X. Kong, X.L. Zhong, Y. Huang, S.F. Li, L. Yang, S.H. Zhang, S.J. Li, W. Li, Mass transfer and reaction mechanism of CO2 capture into a novel amino acid ionic liquid phase-change absorbent, Sep. Purif. Technol. 330 (2024) 125538. [11] J. Palomar, J. Lemus, P. Navarro, C. Moya, R. Santiago, D. Hospital-Benito, E. Hernandez, Process simulation and optimization on ionic liquids, Chem. Rev. 124 (4) (2024) 1649-1737. [12] J. de Riva, J. Suarez-Reyes, D. Moreno, I. Diaz, V. Ferro, J. Palomar, Ionic liquids for post-combustion CO2 capture by physical absorption: Thermodynamic, kinetic and process analysis, Int. J. Greenh. Gas Contr. 61 (2017) 61-70. [13] Z.J. Zhao, J.B. Gao, M.S. Luo, X.Y. Liu, Y.S. Zhao, W.Y. Fei, Molecular simulation and experimental study on low-viscosity ionic liquids for high-efficient capturing of CO2, Energy Fuels 36 (3) (2022) 1604-1613. [14] T. Zhou, C.M. Gui, L.G. Sun, Y.X. Hu, H. Lyu, Z.H. Wang, Z. Song, G.Q. Yu, Energy applications of ionic liquids: recent developments and future prospects, Chem. Rev. 123 (21) (2023) 12170-12253. [15] K. Seo, T.F. Edgar, M.A. Stadtherr, M. Baldea, Design and optimization of carbon capture processes using ionic liquid solvents, Curr. Opin. Chem. Eng. 42 (2023) 100978. [16] S.C. Alla, D. Prasad, S. Kusuma, A.K. Samal, N.K. Chaudhari, J.G. Seo, A.H. Jadhav, Engineered ionic liquids supported on activated carbon as a sustainable and selective catalyst for viable fixation of CO2 into valuable chemicals, Chem. Eng. J. 481 (2024) 148239. [17] J.M. Zhang, S.J. Zhang, K. Dong, Y.Q. Zhang, Y.Q. Shen, X.M. Lv, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids, Chemistry 12 (15) (2006) 4021-4026. [18] W. Xie; X. Ji; X. Feng; X. Lu, Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness, Ind. Eng. Chem. Res. 55 (1) (2015)366-372. [19] F. Endres, Physical chemistry of ionic liquids, Phys. Chem. Chem. Phys. 12 (8) (2010) 1648. [20] X.F. Wang, N.G. Akhmedov, Y.H. Duan, D. Luebke, B.Y. Li, Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture, J. Mater. Chem. A 1 (9) (2013) 2978-2982. [21] L.A. Banu, D. Wang, R.E. Baltus, Effect of ionic liquid confinement on gas separation characteristics, Energy Fuels 27 (8) (2013) 4161-4166. [22] N.H. Wu, X.Y. Ji, W.L. Xie, C. Liu, X. Feng, X.H. Lu, Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports, Langmuir 33 (42) (2017) 11719-11726. [23] D.N. Lapshin, M. Jorge, E.E.B. Campbell, L. Sarkisov, On competitive gas adsorption and absorption phenomena in thin films of ionic liquids, J. Mater. Chem. A 8 (23) (2020) 11781-11799. [24] R. An, Y.D. Zhu, N.H. Wu, W.L. Xie, J.W. Lu, X. Feng, X.H. Lu, Wetting behavior of ionic liquid on mesoporous titanium dioxide surface by atomic force microscopy, ACS Appl. Mater. Interfaces 5 (7) (2013) 2692-2698. [25] I. Harmanli, N.V. Tarakina, M. Antonietti, M. Oschatz, “Giant” nitrogen uptake in ionic liquids confined in carbon pores, J. Am. Chem. Soc. 143 (25) (2021) 9377-9384. [26] M.K. Yang, H.S. Wang, J.Y. Zuo, C. Deng, B. Liu, L.Y. Chai, K. Li, H. Xiao, P. Xiao, X.H. Wang, W. Chen, X.W. Peng, Y. Han, Z.X. Huang, B.C. Dong, C.Y. Sun, G.J. Chen, Efficient separation of butane isomers via ZIF-8 slurry on laboratory- and pilot-scale, Nat. Commun. 13 (1) (2022) 4792. [27] H.A. Salih, I.I.I. Alkhatib, M. Abu Zahra, L.F. Vega, Diamine based hybrid-slurry system for carbon capture, J. CO2 Util. 68 (2023) 102383. [28] J. Avila, C. Corsini, C.M. Correa, M. Rosenthal, A. Padua, M. Costa Gomes, Porous ionic liquids go green, ACS Nano 17 (20) (2023) 19508-19513. [29] Y.F. Chen, S.L. Song, N. Li, J. Wu, X.H. Lu, X.Y. Ji, Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide/titanium dioxide/water absorbent for CO2 separation, Appl. Energy 326 (2022) 119972. [30] Y.F. Chen, H. Yu, J.J. Chen, X.H. Lu, X.Y. Ji, Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl) imide/titanium dioxide/polyethylene glycol, Chin. J. Chem. Eng. 54 (2023) 280-287. [31] Z.X. Dai, Y.F. Chen, Y.H. Sun, Z.D. Zuo, X.H. Lu, X.Y. Ji, Screening ionic liquids for developing advanced immobilization technology for CO2 separation, Front. Chem. 10 (2022) 941352. [32] K.E. Gubbins, K. Gu, L.L. Huang, Y. Long, J.M. Mansell, E.E. Santiso, K.H. Shi, S.B. Malgorzata, D. Srivastava, Surface-driven high-pressure processing, Engineering 4 (3) (2018) 311-320. [33] Y.F. Chen, Y.H. Sun, Z.H. Yang, X.H. Lu, X.Y. Ji, CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent, Appl. Energy 257 (2020) 113962. [34] M. He, X.H. Lu, X. Feng, L. Yu, Z.H. Yang, A simple approach to mesoporous fibrous titania from potassium dititanate, Chem. Commun. (19) (2004) 2202-2203. [35] J. Lemus, F.A. Da Silva F., J. Palomar, P.J. Carvalho, J.A.P. Coutinho, Solubility of carbon dioxide in encapsulated ionic liquids, Sep. Purif. Technol. 196 (2018) 41-46. [36] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed 49 (35) (2010) 6058-6082. [37] C. Tsonopoulos, An empirical correlation of second virial coefficients, AlChE. J. 20 (2) (1974) 263-272. [38] Y.J. Xie, C.Y. Ma, X.H. Lu, X.Y. Ji, Evaluation of imidazolium-based ionic liquids for biogas upgrading, Appl. Energy 175 (2016) 69-81. [39] L.C. Li, H.Q. Yue, T. Ji, W. Li, X.J. Zhao, L. Wang, J. She, X.L. Gu, X.B. Li, Novel mesoporous TiO2(B) whisker-supported sulfated solid superacid with unique acid characteristics and catalytic performances, Appl. Catal. A Gen. 574 (2019) 25-32. [40] Y. Cai, H.E. Wang, S.Z. Huang, J. Jin, C. Wang, Y. Yu, Y. Li, B.L. Su, Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries, Sci. Rep. 5 (2015) 11557. [41] J. She, Z.Y. Wu, K. Zhou, X.J. Zhao, H.H. Min, X.L. Gu, X.B. Li, J.F. Yao, L.C. Li, H.N. Xiao, Facile synthesis of highly active sulfated titania nanofibers for viscous acid-catalytic reactions, Catal. Lett. 151 (5) (2021) 1376-1384. [42] T.T. Wei, X.J. Zhao, L. Li, L. Wang, S.J. Lv, L. Gao, G.S. Yuan, L.C. Li, Enhanced formaldehyde oxidation performance of the mesoporous TiO2(B)-supported Pt catalyst: the role of hydroxyls, ACS Omega 7 (29) (2022) 25491-25501. [43] F.J. Song, Q. Zhong, J. Ding, Y.X. Zhao, Y.F. Bu, Mesoporous TiO2 as the support of tetraethylenepentamine for CO2 capture from simulated flue gas, RSC Adv. 3 (45) (2013) 23785. [44] L.C. Li, H.Q. Yue, S.Y. Zhang, Y.B. Huang, W.N. Zhang, P. Wu, Y.X. Ji, F.W. Huo, Solving the water hypersensitive challenge of sulfated solid superacid in acid-catalyzed reactions, ACS Appl. Mater. Interfaces 11 (10) (2019) 9919-9924. [45] Y.U. Paulechka, G.J. Kabo, A.V. Blokhin, A.S. Shaplov, E.I. Lozinskaya, D.G. Golovanov, K.A. Lyssenko, A.A. Korlyukov, Y.S. Vygodskii, IR and X-ray study of polymorphism in 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imides, J. Phys. Chem. B 113 (28) (2009) 9538-9546. [46] I. Rey, P. Johansson, J. Lindgren, J.C. Lassegues, J. Grondin, L. Servant, Spectroscopic and theoretical study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI), J. Phys. Chem. A 102 (19) (1998) 3249-3258. [47] P. Bandeira, J. Monteiro, A.M. Baptista, F.D. Magalhaes, Tribological performance of PTFE-based coating modified with microencapsulated [HMIM] [NTf2] ionic liquid, Tribol. Lett. 59 (1) (2015) 13. [48] I.J. Hwang, T.A. Vo, S.S. Choi, J. Kim, H.T. Hwang, S.S. Kim, Preparation of activated carbon from ginkgo leaves by steam activation for adsorption application with isotherm and kinetics, Biomass Bioenergy 182 (2024) 107097. [49] U. Kapoor, J.K. Shah, Globular, sponge-like to layer-like morphological transition in 1-n-alkyl-3-methylimidazolium octylsulfate ionic liquid homologous series, J. Phys. Chem. B 122 (1) (2018) 213-228. [50] P.J. Carvalho, L.M.C. Pereira, N.P.F. Goncalves, A.J. Queimada, J.A.P. Coutinho, Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state, Fluid Phase Equilib. 388 (2015) 100-106. [51] A. Hemmati-Sarapardeh, M.N. Amar, M.R. Soltanian, Z.X. Dai, X.Y. Zhang, Modeling CO2 solubility in water at high pressure and temperature conditions, Energy Fuels 34 (4) (2020) 4761-4776. [52] A. Valtz, A. Chapoy, C. Coquelet, P. Paricaud, D. Richon, Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2K, Fluid Phase Equilib. 226 (2004) 333-344. [53] Y.F. Chen, C.Y. Ma, X.Y. Ji, Z.H. Yang, X.H. Lu, Thermodynamic study on aqueous polyethylene glycol 200 solution and performance assessment for CO2 separation, Fluid Phase Equilib. 504 (2020) 112336. [54] B.H. Lu, X.Q. Wang, Y.F. Xia, N. Liu, S.J. Li, W. Li, Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA + [bmim] BF4 using a double stirred cell, Energy Fuels 27 (10) (2013) 6002-6009. [55] Y.F. Chen, S.D. Liu, K. Sun, J.C. Jiang, D. Wang, Z.H. Yang, X.Y. Ji, Kinetics study and performance evaluation of a hybrid choline-glycine/polyethylene glycol/water absorbent for CO2 separation, Sep. Purif. Technol. 304 (2023) 122410. [56] D. Khurana, R. Choudhary, S. Subudhi, A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids, Heat Mass Transf. 53 (1) (2017) 343-361. [57] W. Yu, T. Wang, A.A. Park, M. Fang, Review of liquid nano-absorbents for enhanced CO2 capture, Nanoscale 11 (37) (2019) 17137-17156. [58] Y.F. Chen, B. Li, A. Wang, K. Wang, J.C. Xie, K. Sun, J.C. Jiang, X.Y. Ji, Developing aqueous porous carbons for biogas upgrading, Sep. Purif. Technol. 329 (2024) 125146. [59] N.N. Ye, Y.S. Shen, Y.F. Chen, J. Cao, X.H. Lu, X.Y. Ji, Enhanced CO2 capture through SAPO-34 impregnated with ionic liquid, Langmuir 40 (17) (2024) 9097-9107. [60] N. Ahmad, X.Y. Lin, X.X. Wang, J. Xu, X. Xu, Understanding the CO2 capture performance by MDEA-based deep eutectics solvents with excellent cyclic capacity, Fuel 293 (2021) 120466. |