Chinese Journal of Chemical Engineering ›› 2025, Vol. 80 ›› Issue (4): 184-197.DOI: 10.1016/j.cjche.2025.02.002
Previous Articles Next Articles
Xiangli Liu1, Yiqing Zeng1,2, Jiahao Chen2, Zhaoxiang Zhong1,2, Weihong Xing2,3
Received:
2024-10-12
Revised:
2025-02-09
Accepted:
2025-02-10
Online:
2025-02-28
Published:
2025-04-28
Contact:
Yiqing Zeng,E-mail:yiqingzeng@163.com;Zhaoxiang Zhong,E-mail:zhongzx@njtech.edu.cn
Supported by:
Xiangli Liu1, Yiqing Zeng1,2, Jiahao Chen2, Zhaoxiang Zhong1,2, Weihong Xing2,3
通讯作者:
Yiqing Zeng,E-mail:yiqingzeng@163.com;Zhaoxiang Zhong,E-mail:zhongzx@njtech.edu.cn
基金资助:
Xiangli Liu, Yiqing Zeng, Jiahao Chen, Zhaoxiang Zhong, Weihong Xing. Research progress on the monolithic catalyst for hydrogenation of CO2 to methane[J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 184-197.
Xiangli Liu, Yiqing Zeng, Jiahao Chen, Zhaoxiang Zhong, Weihong Xing. Research progress on the monolithic catalyst for hydrogenation of CO2 to methane[J]. 中国化学工程学报, 2025, 80(4): 184-197.
[1] L. Jeffry, M.Y. Ong, S. Nomanbhay, M. Mofijur, M. Mubashir, P.L. Show, Greenhouse gases utilization: a review, Fuel 301 (2021) 121017. [2] L.L. Sun, Q. Liu, H.J. Chen, H. Yu, L. Li, L.T. Li, Y.Z. Li, C.D. Adenutsi, Source-sink matching and cost analysis of offshore carbon capture, utilization, and storage in China, Energy 291 (2024) 130137. [3] C. Vogt, E. Groeneveld, G. Kamsma, M. Nachtegaal, L. Lu, C.J. Kiely, P.H. Berben, F. Meirer, B.M. Weckhuysen, Unravelling structure sensitivity in CO2 hydrogenation over nickel, Nat. Catal. 1 (2018) 127-134. [4] H.L. Yi, Q.Q. Xue, S.L. Lu, J.J. Wu, Y.J. Wang, G.S. Luo, Effect of pore structure on Ni/Al2O3 microsphere catalysts for enhanced CO2 methanation, Fuel 315 (2022) 123262. [5] R.X. Zhang, H.H. Chen, Y.B. Mu, S. Chansai, X.X. Ou, C. Hardacre, Y.L. Jiao, X.L. Fan, Structured Ni@NaA zeolite supported on silicon carbide foam catalysts for catalytic carbon dioxide methanation, AIChE. J. 66 (11) (2020) e17007. [6] A.B. Shirsath, M.L. Schulte, B. Kreitz, S. Tischer, J.D. Grunwaldt, O. Deutschmann, Spatially-resolved investigation of CO2 methanation over Ni/γ-Al2O3 and Ni3.2Fe/γ-Al2O3 catalysts in a packed-bed reactor, Chem. Eng. J. 469 (2023) 143847. [7] S. Musab Ahmed, J. Ren, I. Ullah, H. Lou, N. Xu, Z. Abbasi, Z. Wang, Ni-based catalysts for CO2 methanation: exploring the support role in structure-activity relationships, ChemSusChem 17 (9) (2024) e202400310. [8] A. Bustinza, M. Frias, Y.F. Liu, E. Garcia-Bordeje, Mono- and bimetallic metal catalysts based on Ni and Ru supported on alumina-coated monoliths for CO2 methanation, Catal. Sci. Technol. 10 (12) (2020) 4061-4071. [9] R.M. Heck, S. Gulati, R.J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chem. Eng. J. 82 (1-3) (2001) 149-156. [10] A. Vita, C. Italiano, L. Pino, P. Frontera, M. Ferraro, V. Antonucci, Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation, Appl. Catal. B Environ. 226 (2018) 384-395. [11] H.L. Huynh, W.M. Tucho, Q. Shen, Z.X. Yu, Bed packing configuration and hot-spot utilization for low-temperature CO2 methanation on monolithic reactor, Chem. Eng. J. 428 (2022) 131106. [12] A. Catarina Faria, C.V. Miguel, A.E. Rodrigues, L.M. Madeira, Modeling and simulation of a steam-selective membrane reactor for enhanced CO2 methanation, Ind. Eng. Chem. Res. 59 (37) (2020) 16170-16184. [13] B.J. Pang, P. Zhang, Z.W. Cao, S. Wang, J.J. Tong, X.F. Zhu, W.S. Yang, Mixed oxygen ionic-carbonate ionic conductor membrane reactor for coupling CO2 capture with in situ methanation, AIChE. J. 69 (2) (2023) e17919. [14] R. Currie, M.W. Fowler, D.S.A. Simakov, Catalytic membrane reactor for CO2 hydrogenation using renewable streams: Model-based feasibility analysis, Chem. Eng. J. 372 (2019) 1240-1252. [15] T.A. Nijhuis, A.E.W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, J.A. Moulijn, Preparation of monolithic catalysts, Catal. Rev. 43 (4) (2001) 345-380. [16] C. Janke, M.S. Duyar, M. Hoskins, R. Farrauto, Catalytic and adsorption studies for the hydrogenation of CO2 to methane, Appl. Catal. B Environ. 152 (2014) 184-191. [17] H.L. Huynh, W.M. Tucho, Z.X. Yu, Structured NiFe catalysts derived from in situ grown layered double hydroxides on ceramic monolith for CO2 methanation, Green Energy Environ. 5 (4) (2020) 423-432. [18] J.Y. Ahn, S.W. Chang, S.M. Lee, S.S. Kim, W.J. Chung, J.C. Lee, Y.J. Cho, K.S. Shin, D.H. Moon, D.D. Nguyen, Developing Ni-based honeycomb-type catalysts using different binary oxide-supported species for synergistically enhanced CO2 methanation activity, Fuel 250 (2019) 277-284. [19] C. Fukuhara, K. Hayakawa, Y. Suzuki, W. Kawasaki, R. Watanabe, A novel nickel-based structured catalyst for CO2 methanation: a honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources, Appl. Catal. A Gen. 532 (2017) 12-18. [20] A. Ricca, L. Truda, V. Palma, Study of the role of chemical support and structured carrier on the CO2 methanation reaction, Chem. Eng. J. 377 (2019) 120461. [21] V. Middelkoop, A. Vamvakeros, D. de Wit, S.D.M. Jacques, S. Danaci, C. Jacquot, Y. de Vos, D. Matras, S.W.T. Price, A.M. Beale, 3D printed Ni/Al2O3 based catalysts for CO2 methanation - a comparative and operando XRD-CT study, J. CO2 Util. 33 (2019) 478-487. [22] N. Engelbrecht, S. Chiuta, R.C. Everson, H.W.J.P. Neomagus, D.G. Bessarabov, Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation, Chem. Eng. J. 313 (2017) 847-857. [23] S. Ratchahat, M. Sudoh, Y. Suzuki, W. Kawasaki, R. Watanabe, C. Fukuhara, Development of a powerful CO2 methanation process using a structured Ni/CeO2 catalyst, J. CO2 Util. 24 (2018) 210-219. [24] P. Summa, M. Motak, P. Da Costa, Optimization of an open-cell foam-based Ni-Mg-Al catalyst for enhanced CO2 hydrogenation to methane, Catalysts 14 (1) (2024) 11. [25] C. Italiano, G. Drago Ferrante, L. Pino, M. Lagana, M. Ferraro, V. Antonucci, A. Vita, Silicon carbide and alumina open-cell foams activated by Ni/CeO2-ZrO2 catalyst for CO2 methanation in a heat-exchanger reactor, Chem. Eng. J. 434 (2022) 134685. [26] Y.K. Li, Q.F. Zhang, R.J. Chai, G.F. Zhao, Y. Liu, Y. Lu, F.H. Cao, Ni-Al2O3/Ni-foam catalyst with enhanced heat transfer for hydrogenation of CO2 to methane, AIChE. J. 61 (12) (2015) 4323-4331. [27] Y.Q. Chen, X.R. Wu, Q. Liu, M.S. He, H.C. Bai, Ni-foam structured Ni-phyllosilicate ensemble as an efficient monolithic catalyst for CO2 methanation, Catal. Lett. 152 (9) (2022) 2738-2744. [28] S. Cimino, E.M. Cepollaro, L. Lisi, S. Fasolin, M. Musiani, L. Vazquez-Gomez, Ru/Ce/Ni metal foams as structured catalysts for the methanation of CO2, Catalysts 11 (1) (2021) 13. [29] S. Danaci, L. Protasova, J. Lefevere, L. Bedel, R. Guilet, P. Marty, Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts, Catal. Today 273 (2016) 234-243. [30] S. Danaci, L. Protasova, F. Snijkers, W. Bouwen, A. Bengaouer, P. Marty, Innovative 3D-manufacture of structured copper supports post-coated with catalytic material for CO2 methanation, Chem. Eng. Process. Process. Intensif. 127 (2018) 168-177. [31] S. Hosseini, H. Moghaddas, S. Masoudi Soltani, S. Kheawhom, Technological applications of honeycomb monoliths in environmental processes: a review, Process. Saf. Environ. Prot. 133 (2020) 286-300. [32] C. Fukuhara, Y. Makiyama, K. Yamamoto, R. Watanabe, A combination of electroless plating and Sol-gel methods as a novel technique for preparing a honeycomb-type-structured catalyst, Chem. Lett. 42 (4) (2013) 416-418. [33] N. Engelbrecht, R.C. Everson, D. Bessarabov, G. Kolb, Microchannel reactor heat-exchangers: a review of design strategies for the effective thermal coupling of gas phase reactions, Chem. Eng. Process. Process. Intensif. 157 (2020) 108164. [34] I. Fuentes, J.P. Mmbaga, R.E. Hayes, F. Gracia, Potential of microreactors for heat transfer efficient CO2 methanation, Chem. Eng. Sci. 280 (2023) 119047. [35] A.K. Raghu, N.S. Kaisare, Analysis of the autothermal operability of the Sabatier reaction in a heat-recirculating microreactor using CFD, React. Chem. Eng. 4 (10) (2019) 1823-1833. [36] C. Chatzilias, E. Martino, A. Katsaounis, C.G. Vayenas, Electrochemical promotion of CO2 hydrogenation in a monolithic electrochemically promoted reactor (MEPR), Appl. Catal. B Environ. 284 (2021) 119695. [37] L. Kiewidt, J. Thoming, Pareto-optimal design and assessment of monolithic sponges as catalyst carriers for exothermic reactions, Chem. Eng. J. 359 (2019) 496-504. [38] C.Y. Chaparro-Garnica, E. Bailon-Garcia, A. Davo-Quinonero, P. Da Costa, D. Lozano-Castello, A. Bueno-Lopez, High performance tunable catalysts prepared by using 3D printing, Materials 14 (17) (2021) 5017. [39] M.V. Twigg, J.T. Richardson, Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res. 46 (12) (2007) 4166-4177. [40] V. Shumilov, A. Kirilin, A. Tokarev, S. Boden, M. Schubert, U. Hampel, L. Hupa, T. Salmi, D.Y. Murzin, Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique, Catal. Today 383 (2022) 64-73. [41] L.Y. Wang, L.Q. An, J. Zhao, S. Shimai, X.J. Mao, J. Zhang, J. Liu, S.W. Wang, High-strength porous alumina ceramics prepared from stable wet foams, J. Adv. Ceram. 10 (4) (2021) 852-859. [42] C. Sinn, G.R. Pesch, J. Thoming, L. Kiewidt, Coupled conjugate heat transfer and heat production in open-cell ceramic foams investigated using CFD, Int. J. Heat Mass Transf. 139 (2019) 600-612. [43] P. Nguyen, C. Pham, Innovative porous SiC-based materials: from nanoscopic understandings to tunable carriers serving catalytic needs, Appl. Catal. A Gen. 391 (1-2) (2011) 443-454. [44] M. Frey, E. David, A.C. Roger, Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor, Comptes Rendus Chim. 18 (3) (2015) 283-292. [45] Y.L. Wei, J. Ji, F.X. Liang, Y.H. Du, Z. Pang, H.L. Wang, Q.G. Li, G.P. Shi, Z. Wang, Pd/P-CeO2-Al2O3 coatings supported on foam ceramic with controlled morphology for high-performance CO2 methanation, Ceram. Int. 49 (22) (2023) 35071-35081. [46] A. Hassan, I.A. Alnaser, A review of different manufacturing methods of metallic foams, ACS Omega 9 (6) (2024) 6280-6295. [47] M. Frey, T. Romero, A.C. Roger, D. Edouard, Open cell foam catalysts for CO2 methanation: Presentation of coating procedures and in situ exothermicity reaction study by infrared thermography, Catal. Today 273 (2016) 83-90. [48] L.G. Dou, C.J. Yan, L.S. Zhong, D. Zhang, J.Y. Zhang, X. Li, L.Y. Xiao, Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating, Chem. Commun. 56 (2) (2019) 205-208. [49] I.G.I. Iwakiri, A.C. Faria, C.V. Miguel, L.M. Madeira, Split feed strategy for low-permselective membrane reactors: a simulation study for enhancing CO2 methanation, Chem. Eng. Process. Process. Intensif. 163 (2021) 108360. [50] S. Escorihuela, C. Cerda-Moreno, F. Weigelt, S. Remiro-Buenamanana, S. Escolastico, A. Tena, S. Shishatskiy, T. Brinkmann, A. Chica, J.M. Serra, Intensification of catalytic CO2 methanation mediated by in situ water removal through a high-temperature polymeric thin-film composite membrane, J. CO2 Util. 55 (2022) 101813. [51] E.Y. Kim, M.H. Hyeon, H.W. Hwang, J.Y. Lee, S.K. Kim, Y.S. Bae, S.Y. Moon, Selective in situ water removal by polybenzoxazole hollow fiber membrane for enhanced CO2 methanation, Chem. Eng. J. 487 (2024) 150206. [52] S. Pati, J. Ashok, N. Dewangan, T.J. Chen, S. Kawi, Ultra-thin (~1 μm) Pd-Cu membrane reactor for coupling CO2 hydrogenation and propane dehydrogenation applications, J. Membr. Sci. 595 (2020) 117496. [53] L.Y. Wei, H. Azad, W. Haije, H. Grenman, W. de Jong, Pure methane from CO2 hydrogenation using a sorption enhanced process with catalyst/zeolite bifunctional materials, Appl. Catal. B Environ. 297 (2021) 120399. [54] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer-Tropsch synthesis with in situ H2O removal-Directions of membrane development, Microporous Mesoporous Mater. 115 (1-2) (2008) 123-136. [55] N. Wang, Y. Liu, A. Huang, J. Caro, Supported SOD membrane with steam selectivity by a two-step repeated hydrothermal synthesis, Microporous Mesoporous Mater. 192 (2014) 8-13. [56] R.J. Hou, C. Fong, B.D. Freeman, M.R. Hill, Z.L. Xie, Current status and advances in membrane technology for carbon capture, Sep. Purif. Technol. 300 (2022) 121863. [57] A.I. Tsiotsias, E. Harkou, N.D. Charisiou, V. Sebastian, D.R. Naikwadi, B. van der Linden, A. Bansode, D. Stoian, G. Manos, A. Constantinou, M.A. Goula, Very low Ru loadings boosting performance of Ni-based dual-function materials during the integrated CO2 capture and methanation process, J. Energy Chem. 102 (2025) 309-328. [58] Z.G. Wang, J. Xu, S. Pati, T.J. Chen, Y.Z. Deng, N. Dewangan, L. Meng, J.Y.S. Lin, S. Kawi, High H2 permeable SAPO-34 hollow fiber membrane for high temperature propane dehydrogenation application, AIChE. J. 66 (9) (2020) e16278. [59] Z.F. Bian, H.C. Xia, W.Q. Zhong, B. Jiang, Y. Yu, Z.G. Wang, K.W. Yu, CFD simulation on hydrogen-membrane reactor integrating cyclohexane dehydrogenation and CO2 methanation reactions: a conceptual study, Energy Convers. Manag. 235 (2021) 113989. [60] M.M. Alinejad, K. Ghasemzadeh, A. Iulianelli, S. Liguori, M. Ghahremani, CFD development of a silica membrane reactor during HI decomposition reaction coupling with CO2 methanation at sulfur-iodine cycle, Nanomaterials 12 (5) (2022) 824. |
[1] | Haoran Yin, Lili Mu, Yifeng Chen, Licheng Li, Kang Sun, Xiaoyan Ji. Improving CO2 solubility in a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/mesoporous titanium dioxide/water with confinement effect [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 100-109. |
[2] | Wenbo Li, Xinyao Fu, Weiming Zhai, Xingyang Huang, Wenbin Chen, Chen Zhang, Wei Zhang, Cuiqing Li, Yong Luo, Feng Liu, Mingfeng Li. Hydrogenation kinetic of alkenes and aromatics over NiMo hydrotreatment catalysts [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 11-22. |
[3] | Aleksey K. Sagidullin, Sergey S. Skiba, Tatyana P. Adamova, Andrey Y. Manakov. Investigation of the formation processes of CO2 hydrate films on the interface of liquid carbon dioxide with humic acids solutions [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 53-61. |
[4] | Hu Wang, Qingrong Zheng. Structural modification and heat transfer enhancement on HKUST-1 for adsorbed natural gas [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 109-119. |
[5] | Zhe Ding, Li Guo, Fang Bai, Chao Hua, Ping Lu, Jinyi Chen. Toward the rational design for low-temperature hydrogenation of silicon tetrachloride: Mechanism and data-driven interpretable descriptor [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 172-184. |
[6] | Zhiwei Zhao, Yating Wang, Yuhao Tang, Xiaoqing Wang, Feifei Zhang, Jiangfeng Yang. Copper-based metal–organic framework with two methane traps for efficient CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 234-240. |
[7] | Jian Long, Mengru Zhang, Anlan Li, Cheng Huang, Dong Xue. Hybrid model of multimodal based on data enhancement and lumped reaction kinetics: Applying to industrial ebullated-bed residue hydrogenation unit [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 284-302. |
[8] | Junzhe Xu, Shuang Liu, Lin Li, Xian Qin, Ruixin Qu, Jinguo Wang, Di Liu, Gaixia Wei. Rational design of nitrogen-doped carbon for palladium catalysts in hydrogenation of hydrazo compounds [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 156-166. |
[9] | Yun Zhou, Wenzhi Xia, Guangsheng Wei, Haichuan Wang. Impact of CO2 as an oxidant on the decarburization and chromium retention and an approach for CO2 recycling [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 203-206. |
[10] | Xin Li, Yue Ma, Xuning Wang, Jianguo Wu, Dong Cao, Daojian Cheng. Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 60-68. |
[11] | Yan Zhang, Xiangxue Zhang, Keng Sang, Wenyao Chen, Gang Qian, Jing Zhang, Xuezhi Duan, Xinggui Zhou, Weikang Yuan. Kinetics insights into size effects of carbon nanotubes’ growth and their supported platinum catalysts for 4,6-dinitroresorcinol hydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 133-140. |
[12] | Xufang Chen, Xin Shu, Yanru Zhu, Jian Zhang, Zhigang Chai, Hongyan Song, Zhe An, Jing He. Highly dispersed MgInCe-mixed metal oxides catalyzed direct carbonylation of glycerol and CO2 into glycerol carbonate [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 153-163. |
[13] | Zhendong Wang, Bofeng Zhang, Guozhu Liu, Xiangwen Zhang. Thermal stable Pt clusters anchored by K/TiO2-Al2O3 for efficient cycloalkane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 187-198. |
[14] | Junjie Cai, Xijian Li, Hao Sui, Honggao Xie. Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 122-131. |
[15] | Zhengjian Hou, Yuanyuan Zhu, Hua Chi, Li Zhao, Huijie Wei, Yanyan Xi, Lishuang Ma, Xiang Feng, Xufeng Lin. Silica-modified Pt/TiO2 catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 189-198. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||