[1] H.L. Yu, C.Q. Wang, T.J. Lin, Y.L. An, Y.C. Wang, Q.Y. Chang, F. Yu, Y. Wei, F.F. Sun, Z. Jiang, S.G. Li, Y.H. Sun, L.S. Zhong, Direct production of olefins from syngas with ultrahigh carbon efficiency, Nat. Commun. 13 (1) (2022) 5987. [2] H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas: a review, ACS Catal. 3 (9) (2013) 2130-2149. [3] V. Zacharopoulou, A. Lemonidou, Olefins from biomass intermediates: a review, Catalysts 8 (1) (2018) 2. [4] I.K. Ghosh, Z. Iqbal, T. van Heerden, E. van Steen, A. Bordoloi, Insights into the unusual role of chlorine in product selectivity for direct hydrogenation of CO/CO2 to short-chain olefins, Chem. Eng. J. 413 (2021) 127424. [5] B. Chen, Z.N. Zhou, Y.Z. Li, K.B. Tan, Y.T. Wang, X.P. Rao, J.L. Huang, X.D. Zhang, Q.B. Li, G.W. Zhan, Catalytic pyrolysis of fatty acids and oils into liquid biofuels and chemicals over supported Ni catalysts on biomass-derived carbon, Appl. Catal. B Environ. 338 (2023) 123067. [6] S. Ota, J. Fukushima, K. Kimijima, M. Kimura, N. Igura, N. Tezuka, T. Sato, H. Einaga, S. Tsubaki, Microwave-enhanced catalytic conversion of fatty acid ester to olefins by Na-ZSM-5, Chem. Eng. J. 497 (2024) 154737. [7] L. Zhao, P.P. Xiao, Y. Wang, Y. Lu, T.M. Karim, H. Gies, T. Yokoi, Modulation of Al distribution in high-silica ZSM-5 zeolites for enhancing catalytic performance, ACS Appl. Mater. Interfaces 16 (14) (2024) 17701-17714. [8] M.H. Sun, S.S. Gao, Z.Y. Hu, T. Barakat, Z. Liu, S. Yu, J.M. Lyu, Y. Li, S.T. Xu, L.H. Chen, B.L. Su, Boosting molecular diffusion following the generalized Murray’s Law by constructing hierarchical zeolites for maximized catalytic activity, Natl. Sci. Rev. 9 (12) (2022) nwac236. [9] A. Yamaguchi, D.F. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane, Fuel Process. Technol. 126 (2014) 343-349. [10] X. Hou, L. Zhao, Z.H. Diao, Roles of alkenes and coke formation in the deactivation of ZSM-5 zeolites during n-pentane catalytic cracking, Catal. Lett. 150 (9) (2020) 2716-2725. [11] S. Hodoshima, A. Motomiya, S. Wakamatsu, R. Kanai, F. Yagi, Catalytic conversion of light hydrocarbons to propylene over MFI-zeolite/metal-oxide composites, Microporous Mesoporous Mater. 233 (2016) 125-132. [12] C. Li, Q.Q. Zhu, Z.H. Cui, B. Wang, Y.M. Fang, T.W. Tan, Highly efficient and selective production of acrylic acid from 3-hydroxypropionic acid over acidic heterogeneous catalysts, Chem. Eng. Sci. 183 (2018) 288-294. [13] G.T.M. Kadja, N.J. Azhari, F. Apriadi, T.H. Novita, I.R. Safira, C.B. Rasrendra, Low-temperature synthesis of three-pore system hierarchical ZSM-5 zeolite for converting palm oil to high octane green gasoline, Microporous Mesoporous Mater. 360 (2023) 112731. [14] J. Tuo, J.M. Lv, S.B. Fan, H.B. Li, N.W. Yang, S.P. Cheng, X.H. Gao, T.S. Zhao, One-pot synthesis of [Mn, H] ZSM-5 and the role of Mn in methanol-to-propylene reaction, Fuel 308 (2022) 121995. [15] R.S. Bai, Y. Song, Y. Li, J.H. Yu, Creating hierarchical pores in zeolite catalysts, Trends Chem. 1 (6) (2019) 601-611. [16] K.E. Ogunronbi, N. Al-Yassir, S. Al-Khattaf, New insights into hierarchical metal-containing zeolites; synthesis and kinetic modelling of mesoporous gallium-containing ZSM-5 for propane aromatization, J. Mol. Catal. A Chem. 406 (2015) 1-18. [17] A.S.F. Nanda, G.T.M. Kadja, Bio-based templates for generating hierarchical zeolites: an overview for greener synthesis pathway, J. Porous Mater. 31 (4) (2024) 1155-1173. [18] H.B. Fu, Y.F. Gu, T.H. Gao, F.W. Li, H.S. Gu, H.C. Ge, Y.K. Liu, Z.X. Li, H.F. Lin, J.F. Cao, Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics, Chin. J. Chem. Eng. 65 (2024) 92-105. [19] Y.H. Yue, J. Tian, J.C. Ma, S. Yang, W. Li, J.L. Huang, Q.B. Li, G.W. Zhan, Regulation of acidity properties of ZSM-5 and proximity between metal oxide and zeolite on bifunctional catalysts for enhanced CO2 hydrogenation to aromatics, Appl. Catal. B Environ. Energy 355 (2024) 124158. [20] T.J. Fu, Y.T. Han, C.Y. Li, M.T. Guo, G.W. Zhan, Z. Li, Self-assembly of hierarchical ZSM-5 particles on rice husk template as hybrid catalysts for boosting methanol aromatization, Chem. Eng. Sci. 284 (2024) 119457. [21] W. Li, G.W. Zhan, X.B. Liu, Y.H. Yue, K.B. Tan, J. Wang, J.L. Huang, Q.B. Li, Assembly of ZnZrOx and ZSM-5 on hierarchically porous bio-derived SiO2 platform as bifunctional catalysts for CO2 hydrogenation to aromatics, Appl. Catal. B Environ. 330 (2023) 122575. [22] P. Tian, G.W. Zhan, J. Tian, K.B. Tan, M.T. Guo, Y.T. Han, T.J. Fu, J.L. Huang, Q.B. Li, Direct CO2 hydrogenation to light olefins over ZnZrOx mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template, Appl. Catal. B Environ. 315 (2022) 121572. [23] X.Z. Zhang, Y.D. Han, D.P. Li, Z.G. Zhang, X.X. Ma, Study on attrition of spherical-shaped Mo/HZSM-5 catalyst for methane dehydro-aromatization in a gas-solid fluidized bed, Chin. J. Chem. Eng. 38 (2021) 172-183. [24] L. Lakiss, J.P. Gilson, V. Valtchev, S. Mintova, A. Vicente, A. Vimont, R. Bedard, S. Abdo, J. Bricker, Zeolites in a good shape: catalyst forming by extrusion modifies their performances, Microporous Mesoporous Mater. 299 (2020) 110114. [25] D.F. Wu, M.L. Tang, Effects of process factors on extrusion of hierarchically porous ZSM-5 zeolite, Powder Technol. 352 (2019) 79-90. [26] M. Tomas, H. Amaveda, L.A. Angurel, M. Mora, Effect of silica Sol on the dispersion-gelation process of concentrated silica suspensions for fibre-reinforced ceramic composites, J. Eur. Ceram. Soc. 33 (4) (2013) 727-736. [27] S. Sankar, S.K. Sharma, N. Kaur, B. Lee, D.Y. Kim, S. Lee, H. Jung, Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method, Ceram. Int. 42 (4) (2016) 4875-4885. [28] I. Quispe, R. Navia, R. Kahhat, Energy potential from rice husk through direct combustion and fast pyrolysis: a review, Waste Manag. 59 (2017) 200-210. [29] D.K. Yu, M.L. Fu, Y.H. Yuan, Y.B. Song, J.Y. Chen, Y.W. Fang, One-step synthesis of hierarchical-structured ZSM-5 zeolite, J. Fuel Chem. Technol. 44 (11) (2016) 1363-1369. [30] P. Singh, J. Bahadur, K. Pal, One-step one chemical synthesis process of graphene from rice husk for energy storage applications, Graphene 6 (3) (2017) 61-71. [31] H. Bahruji, R.D. Armstrong, J. Ruiz Esquius, W. Jones, M. Bowker, G.J. Hutchings, Hydrogenation of CO2 to dimethyl ether over Broensted acidic PdZn catalysts, Ind. Eng. Chem. Res. 57 (20) (2018) 6821-6829. [32] J. Li, X.Y. Li, G.Q. Zhou, W. Wang, C.W. Wang, S. Komarneni, Y.J. Wang, Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions, Appl. Catal. A Gen. 470 (2014) 115-122. [33] B. Zhao, P. Zhai, P.F. Wang, J.Q. Li, T. Li, M. Peng, M. Zhao, G. Hu, Y. Yang, Y.W. Li, Q.W. Zhang, W.B. Fan, D. Ma, Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts, Chem 3 (2) (2017) 323-333. [34] Y.F. Xue, J.F. Li, P.F. Wang, X.J. Cui, H.Y. Zheng, Y.L. Niu, M. Dong, Z.F. Qin, J.G. Wang, W.B. Fan, Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins, Appl. Catal. B Environ. 280 (2021) 119391. [35] Z. J. Cai, P. Tian, Z. L. Huang, M. Huang, J. L. Huang, G. W. Zhan, Q. B. Li, Preparation of Cu/ZnO nanocatalysts based on bio-templates for CO2 hydrogenation, CIESC J. 72(7)(2021)3668-3678.(in Chinese). [36] T. Roostaei, M.R. Rahimpour, Role of support bio-templating in Ni/Al2O3 catalysts for hydrogen production via dry reforming of methane, Sci. Rep. 13 (2023) 16972. [37] H.Y. Liu, J.G. Wang, W. Hua, J.J. Wang, D. Nan, C.G. Wei, Scale-up production of high-tap-density carbon/MnOx/carbon nanotube microcomposites for Li-ion batteries with ultrahigh volumetric capacity, Chem. Eng. J. 354 (2018) 220-227. [38] C.F. Jia, L.K. Zong, Y.Q. Wen, H.X. Xu, H.J. Wei, X.Y. Wang, Synthesis and scale-up of ZSM-5 aggregates with hierarchical structure, Res. Chem. Intermed. 45 (7) (2019) 3913-3927. [39] J.T. Garcia-Sanchez, V.G. Baldovino-Medrano, Elements of the manufacture and properties of technical catalysts, Ind. Eng. Chem. Res. 62 (20) (2023) 7769-7838. [40] C. Tian, P. Dongfang Wu, Application of response surface methodology for the optimization of drying parameters of ZSM-5 extruded catalysts, ChemistrySelect 4 (36) (2019) 10810-10818. [41] F.H. Wu, D.F. Wu, Attrition resistances and mechanisms of three types of FCC catalysts, Powder Technol. 305 (2017) 289-296. [42] J.G. Meng, X.B. Wang, Z.L. Zhao, A.Q. Zheng, Z. Huang, G.Q. Wei, K. Lv, H.B. Li, Highly abrasion resistant thermally fused olivine as in situ catalysts for tar reduction in a circulating fluidized bed biomass gasifier, Bioresour. Technol. 268 (2018) 212-220. [43] P. Zhang, Q.Y. Han, J.J. Wu, Y. Zhang, T.H. Zhang, Mechanical properties of nano-SiO2 reinforced engineered cementitious composites after exposure to high temperatures, Constr. Build. Mater. 356 (2022) 129123. [44] C. Tian, D.F. Wu, Mechanical properties of ZSM-5 extruded catalysts: calcination process optimization using response surface methodology, Chem. Eng. Commun. 208 (11) (2021) 1594-1606. [45] M. Zakeri, A. Samimi, M.S. Afarani, A. Salehirad, Interaction between Weibull parameters and mechanical strength reliability of industrial-scale water gas shift catalysts, Particuology 32 (2017) 160-166. [46] W. Li, K.C. Wang, G.W. Zhan, J.L. Huang, Q.B. Li, Design and synthesis of bioinspired ZnZrOx&Bio-ZSM-5 integrated nanocatalysts to boost CO2 hydrogenation to light olefins, ACS Sustainable Chem. Eng. 9 (18) (2021) 6446-6458. [47] L. Ye, W.J. Yang, J. Fan, X. Pu, X. Han, X.L. Qin, M.X. Ma, Z.Y. Huang, T.T. Wang, K.K. Zhu, Y.H. Xu, J.C. Liu, The influence of pore-architecture over n-heptane cracking using MFI, *BEA and MSE zeolite catalysts: Multipore versus hierarchical porosity, Chem. Eng. J. 482 (2024) 148705. |