[1] S.F. Yan, X.F. Yan, Quality-driven autoencoder for nonlinear quality-related and process-related fault detection based on least-squares regularization and enhanced statistics, Ind. Eng. Chem. Res. 59 (26) (2020) 12136-12143. [2] W.W. Yan, R.C. Xu, K.D. Wang, T. Di, Z. Jiang, Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant, Ind. Eng. Chem. Res. 59 (10) (2020) 4589-4601. [3] H. Wu, Y.M. Han, J.Y. Jin, Z.Q. Geng, Novel deep learning based on data fusion integrating correlation analysis for soft sensor modeling, Ind. Eng. Chem. Res. 60 (27) (2021) 10001-10010. [4] Z.Q. Ge, Active learning strategy for smart soft sensor development under a small number of labeled data samples, J. Process. Contr. 24 (9) (2014) 1454-1461. [5] J. Tang, W. Yu, T.Y. Chai, L.J. Zhao, On-line principal component analysis with application to process modeling, Neurocomputing 82 (2012) 167-178. [6] Y.Q. Liu, Y.P. Pan, D.P. Huang, Development of a novel adaptive soft-sensor using variational Bayesian PLS with accounting for online identification of key variables, Ind. Eng. Chem. Res. 54 (1) (2015) 338-350. [7] X.F. Yuan, W.W. Xu, Y.L. Wang, C.H. Yang, W.H. Gui, A deep residual PLS for data-driven quality prediction modeling in industrial process, IEEE/CAA J. Autom. Sin. 11 (8) (2024) 1777-1785. [8] Z.Y. Yang, K. Wang, L.J. Ye, X.F. Yuan, Y.L. Wang, C.H. Yang, W.H. Gui, A difference metric attention with position distance-based weighting for transformer in data sequence modeling of industrial processes, IEEE Trans. Ind. Inform. 21 (2) (2025) 1803-1812. [9] J. Tang, T.Y. Chai, L.J. Zhao, W. Yu, H. Yue, Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm, Neurocomputing 78 (1) (2012) 38-47. [10] B. Dkhala, N. Mezned, F. Alayet, S. Abdeljaouad, PLSR method for the content prediction of high contamination risk minerals using sentinel-2 and spectroscopic data: case study of hammam bent jedidi, In:IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. Athens, Greece. IEEE, 2024. [11] J.L. Zhu, Z.Q. Ge, Z.H. Song, Variational Bayesian Gaussian mixture regression for soft sensing key variables in non-Gaussian industrial processes, IEEE Trans. Contr. Syst. Technol. 25 (3) (2017) 1092-1099. [12] Z. Cheng, X.G. Liu, Optimal online soft sensor for product quality monitoring in propylene polymerization process, Neurocomputing 149 (2015) 1216-1224. [13] X. Gao, J. Hou, An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process, Neurocomputing 174 (2016) 906-911. [14] C. Shang, F. Yang, D.X. Huang, W.X. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process. Contr. 24 (3) (2014) 223-233. [15] Z.Y. Zhang, T. Wang, X.G. Liu, Melt index prediction by aggregated RBF neural networks trained with chaotic theory, Neurocomputing 131 (2014) 368-376. [16] J.N. Su, Optimization of K-means algorithm with computer programming for feature extraction, In:2023 International Conference on Networking, Informatics and Computing (ICNETIC). Palermo, Italy. IEEE, 2023. [17] J.L. Tian, J.S. Zhang, H. Luo, C.S. Huang, M.Y. Chow, Y.C. Jiang, S. Yin, A feature extraction and analysis method for battery health monitoring, In:2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE), Ulsan, Korea, 2024. [18] Y.Z. Bai, H.L. Feng, Improving lithium-ion battery life prediction with an enhanced multi-layer perceptron model featuring autoencoder-based feature extraction, 2024 3rd International Conference on Smart Grids and Energy Systems (SGES), Zhengzhou, China, 2024. [19] J. Yu, C.Q. Hong, Y. Rui, D.C. Tao, Multitask autoencoder model for recovering human poses, IEEE Trans. Ind. Electron. 65 (6) (2018) 5060-5068. [20] R. Elharbili, T. El Moussaoui, K. El Ass, M.O. Belloulid, A. El Alaoui El Fels, M.Y. Samiri, Hybrid data driven approach based on ANNs-PCA for wastewater treatment plant performance assessment, Clean. Water 2 (2024) 100058. [21] N. Shah, A. Ganatra, Comparative study of autoencoders-its types and application, In:2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India. IEEE, 2022. [22] S. Lee, J.H. Chang, Deep belief networks ensemble for blood pressure estimation, IEEE Access 5 (2017) 9962-9972. [23] X.F. Yuan, S.B. Qi, Y.A.W. Shardt, Y.L. Wang, C.H. Yang, W.H. Gui, Soft sensor model for dynamic processes based on multichannel convolutional neural network, Chemom. Intell. Lab. Syst. 203 (2020) 104050. [24] Q.L. Wang, J.Q. Han, F. Chen, X. Zhang, C. Yun, Z. Dou, T.J. Yan, G.A. Yang, Real-time risk prediction of chemical processes based on attention-based Bi-LSTM, Chin. J. Chem. Eng. 75 (2024) 131-141. [25] P.G. Li, H.F. Yu, W.K. Zhang, G.L. Xu, X. Sun, SA-NLI: a supervised attention based framework for natural language inference, Neurocomputing 407 (2020) 72-82. [26] A. Choudhury, T. Bhowmik, Enhancing speech emotion recognition through multimodal fusion and advanced feature extraction techniques, In:2023 2nd International Conference on Futuristic Technologies (INCOFT). Belagavi, Karnataka, India. IEEE, 2023. [27] S. Xiang, Q. Xie, M. Wang, Semantic segmentation for remote sensing images based on adaptive feature selection network, IEEE Geosci. Remote. Sens. Lett. 19 (2021) 8006705. [28] N.D. Rathi, A.V. Deorankar, Overview and an Approach to AI based Healthcare System by using NLP, In:2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). Bhilai, India,2023. [29] R.L. Liu, Z. Rong, B. Jiang, Z.Q. Pang, C. Tang, Soft sensor of 4-CBA concentration using deep belief networks with continuous restricted Boltzmann machine, In:2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS). Nanjing, China. IEEE, 2018. [30] X.D. Gong, S.B. Liao, F. Hu, X.Q. Hu, C.S. Liu, Autoencoder-based anomaly detection for time series data in complex systems, In:2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Shenzhen, China, 2022. [31] A.J. Skylvik, K.G. Robbersmyr, H.V. Khang, Data-driven Fault Diagnosis of Induction Motors Using a Stacked Autoencoder Network. In:2019 22nd International Conference on Electrical Machines and Systems (ICEMS). Harbin, China, 2019. [32] Z. Tao, Y. Yan, Y. Yang, Y.Y. Wang, J. Luo, A nonnegativity-constraint sparse stacked denoising autoencoder for anomaly detection in electric power communication network, In:2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Paris, France. IEEE, 2020. [33] F. Yu, J.C. Liu, L.L. Shang, D.M. Liu, Multifractal analysis and stacked autoencoder-based feature learning method for multivariate processes monitoring, In:2022 41st Chinese Control Conference (CCC). Hefei, China. IEEE, 2022. [34] L.F. Zhou, K.K. Huang, C.H. Yang, X.F. Chen, Y.F. Xie, W.C. Yue, A stacked autoencoder for operation mode classification of complicated industrial process, In:2018 Chinese Automation Congress (CAC). Xi’an, China. IEEE, 2018. [35] X.F. Yuan, Y.J. Gu, Y.L. Wang, C.H. Yang, W.H. Gui, A deep supervised learning framework for data-driven soft sensor modeling of industrial processes, IEEE Trans. Neural Netw. Learn. Syst. 31 (11) (2020) 4737-4746. [36] X.F. Yuan, J. Zhou, B. Huang, Y.L. Wang, C.H. Yang, W.H. Gui, Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy, IEEE Trans. Ind. Inform. 16 (6) (2020) 3721-3730. [37] X.F. Yuan, B. Huang, Y.L. Wang, C.H. Yang, W.H. Gui, Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE, IEEE Trans. Ind. Inform. 14 (7) (2018) 3235-3243. [38] X.J. Liu, H. Zhang, X.B. Kong, K.Y. Lee, Wind speed forecasting using deep neural network with feature selection, Neurocomputing 397 (2020) 393-403. [39] X.F. Yan, J. Wang, Q.C. Jiang, Deep relevant representation learning for soft sensing, Inf. Sci. 514 (2020) 263-274. [40] X.F. Yuan, C. Ou, Y.L. Wang, C.H. Yang, W.H. Gui, A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process, IEEE Trans. Neural Netw. Learn. Syst. 32 (8) (2021) 3296-3305. [41] J.B. Yu, X.F. Yan, Layer-by-layer enhancement strategy of favorable features of the deep belief network for industrial process monitoring, Ind. Eng. Chem. Res. (2018) acs.iecr.8b04689. [42] F. Wang, R.N. Liu, Q.H. Hu, X.F. Chen, Cascade convolutional neural network with progressive optimization for motor fault diagnosis under nonstationary conditions, IEEE Trans. Ind. Inform. 17 (4) (2021) 2511-2521. [43] M.L. Fang, N. Damer, F. Boutros, F. Kirchbuchner, A. Kuijper, Deep learning multi-layer fusion for an accurate iris presentation attack detection, 2020 IEEE 23rd International Conference on Information Fusion (FUSION). July 6-9, 2020, Rustenburg, South Africa. IEEE, (2020) 1-8. [44] S. Falkner, A. Klein, F. Hutter, BOHB: Robust and efficient hyperparameter optimization at scale, In: The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018. [45] J. Wu; X.Y. Chen; H. Zhang,L.D. Xiong,H. Lei,S.H. Deng, Hyperparameter optimization for machine learning models based on Bayesian optimization, Journal of Electronic Science and Technology, 17(2019)26-40. [46] L. Fortuna, S. Graziani, M.G. Xibilia, Soft sensors for product quality monitoring in debutanizer distillation columns, Contr. Eng. Pract. 13 (4) (2005) 499-508. |