Chinese Journal of Chemical Engineering ›› 2025, Vol. 88 ›› Issue (12): 1-12.DOI: 10.1016/j.cjche.2025.09.011
Jiangbo Xiong1, Chunfei Zhou1,2, Qingwen Zhang1, Huiwen Gu1, Yujuan Huang1, Pin Zhang3, Min Jiang1, Faying Lai1, Xiaoping Liu1, Huajun Huang1
Received:2025-05-27
Revised:2025-07-18
Accepted:2025-09-29
Online:2025-10-09
Published:2026-02-09
Contact:
Xiaoping Liu,E-mail:xpl@jxau.edu.cn;Huajun Huang,E-mail:huanghuajun2004@126.com
Supported by:Jiangbo Xiong1, Chunfei Zhou1,2, Qingwen Zhang1, Huiwen Gu1, Yujuan Huang1, Pin Zhang3, Min Jiang1, Faying Lai1, Xiaoping Liu1, Huajun Huang1
通讯作者:
Xiaoping Liu,E-mail:xpl@jxau.edu.cn;Huajun Huang,E-mail:huanghuajun2004@126.com
基金资助:Jiangbo Xiong, Chunfei Zhou, Qingwen Zhang, Huiwen Gu, Yujuan Huang, Pin Zhang, Min Jiang, Faying Lai, Xiaoping Liu, Huajun Huang. Humification of organic matter and passivation of heavy metals during the hydrothermal carbonization of swine manure[J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 1-12.
Jiangbo Xiong, Chunfei Zhou, Qingwen Zhang, Huiwen Gu, Yujuan Huang, Pin Zhang, Min Jiang, Faying Lai, Xiaoping Liu, Huajun Huang. Humification of organic matter and passivation of heavy metals during the hydrothermal carbonization of swine manure[J]. 中国化学工程学报, 2025, 88(12): 1-12.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.09.011
| [1] M. Hu, K. Guo, H.Q. Zhou, W.K. Zhu, L.W. Deng, L.C. Dai, Techno-economic assessment of swine manure biochar production in large-scale piggeries in China, Energy 308 (2024) 133037. [2] M. Qaswar, Y.R. Liu, J. Huang, L. Kaillou, M. Mudasir, Z.Z. Lv, H.Q. Hou, X.J. Lan, J.H. Ji, W. Ahmed, D.C. Li, H.M. Zhang, Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil, J. Soils Sediments 20 (4) (2020) 2093-2106. [3] H.Y. Fan, C.H. Li, W.X. Zhang, C.X. Liu, O.K. Abass, L. Liu, X. Huang, Y.J. Sun, H.W. Wang, M.W. Gesiye, W.S. Chen, Evaluation of pollution potential in swine manure across growth stages: Impact of dietary nutrients and management strategies, Sci. Total Environ. 958 (2025) 177942. [4] Z.Q. Chen, W. Liu, T. Qin, M.T. Wu, Z.W. Li, Y.L. Zhang, D.S. Wu, E. Abakumov, E. Chebykina, Y. Zhang, J.J. Dai, H.Q. Xiao, X.C. Xie, M. Kong, Phosphorus flow characteristics in the waste system of Poyang Lake Watershed over the past 70 years, Sci. Total Environ. 941 (2024) 173704. [5] J. Meng, H.L. Zhang, Z.H. Cui, H.P. Guo, O. Masek, B. Sarkar, H.L. Wang, N. Bolan, S.D. Shan, Comparative study on the characteristics and environmental risk of potentially toxic elements in biochar obtained via pyrolysis of swine manure at lab and pilot scales, Sci. Total Environ. 825 (2022) 153941. [6] Q.Q. Lang, M.J. Chen, Y.C. Guo, Z.G. Liu, C. Gai, Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk, J. Environ. Manage. 234 (2019) 97-103. [7] X.R. Wang, X. Zhang, N. Li, Z.Z. Yang, B.X. Li, X.L. Zhang, H.N. Li, Prioritized regional management for antibiotics and heavy metals in animal manure across China, J. Hazard. Mater. 461 (2024) 132706. [8] R. Wang, M.X. Chen, F. Feng, J.Y. Zhang, Q.W. Sui, J. Tong, Y.S. Wei, D.B. Wei, Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion, Bioresour. Technol. 238 (2017) 57-69. [9] X.L. Guo, J. Gu, H. Gao, Q.J. Qin, Z.X. Chen, L. Shao, L. Chen, H.L. Li, W.J. Zhang, S.N. Chen, J. Liu, Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting, Bioresour. Technol. 108 (2012) 140-148. [10] R. Anjum, E. Grohmann, N. Krakat, Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances, Chemosphere 168 (2017) 1637-1647. [11] R.P. Ipiales, A. Sarrion, E. Diaz, M.A. de la Rubia, E. Diaz-Portuondo, C.J. Coronella, A.F. Mohedano, Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation, Environ. Res. 245 (2024) 118062. [12] S.D. Ding, B.Y. Wang, Y.Y. Feng, H.B. Fu, Y.F. Feng, H.F. Xie, L.H. Xue, Livestock manure-derived hydrochar improved rice paddy soil nutrients as a cleaner soil conditioner in contrast to raw material, J. Clean. Prod. 372 (2022) 133798. [13] X.M. Wu, Z.M. Huang, J.W. Chen, Parameter-optimized hydrothermal carbonization of swine manure for carbon recovery integrated antibiotic degradation and derived wastewater fertilization, Energy 324 (2025) 136059. [14] X.H. Chen, X.X. Fan, K.P. Gao, Y. Cheng, K. Zhang, L.Y. Liu, L.F. Fang, J.H. Park, X.P. Chen, R. Xiao, Impacts of EDTA on the fate of nutrients and heavy metals during the hydrothermal carbonization of poultry manure, J. Environ. Chem. Eng. 11 (3) (2023) 110061. [15] H.E.B. Brian, Z.T. Bi, L.D. Chen, Assessment of heavy metals in hydrochar produced by hydrothermal carbonization of dairy manure, Front. Agr. Sci. Eng. (2023) 0/first_page>. [16] S.H. Li, D.S. Zou, L.C. Li, L. Wu, F. Liu, X.Y. Zeng, H. Wang, Y.F. Zhu, Z.H. Xiao, Evolution of heavy metals during thermal treatment of manure: a critical review and outlooks, Chemosphere 247 (2020) 125962. [17] Z.T. Feng, J.B. Xiong, G.F. Wang, L. Li, C.F. Zhou, C.H. Zhou, H.J. Huang, Treatment of swine manure by hydrothermal carbonization: The influential effect and preliminary mechanism of surfactants, Sci. Total Environ. 946 (2024) 174233. [18] J.X. Wang, S.W. Chen, F.Y. Lai, S.Y. Liu, J.B. Xiong, C.F. Zhou, Yi-Yu, H.J. Huang, Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar, J. Supercrit. Fluids 162 (2020) 104858. [19] J.B. Xiong, Z.Q. Pan, X.F. Xiao, H.J. Huang, F.Y. Lai, J.X. Wang, S.W. Chen, Study on the hydrothermal carbonization of swine manure: The effect of process parameters on the yield/properties of hydrochar and process water, J. Anal. Appl. Pyrolysis 144 (2019) 104692. [20] Y. Wang, C.B. Yuan, K. Zhang, J.Y. Tong, N.J. Ma, M.M. Ali, Y.D. Xu, Z.D. Liu, Rapid humification of biomass via hydrothermal conversion: a comprehensive review, Green Chem. 27 (6) (2025) 1588-1603. [21] Y.C. Shao, Z.H. Li, Y.Y. Long, J. Zhao, W.Z. Huo, Z.R. Luo, W.J. Lu, Direct humification of biowaste with hydrothermal technology: a review, Sci. Total Environ. 908 (2024) 168232. [22] F. Yang, M. Antonietti, The sleeping giant: a polymer View on humic matter in synthesis and applications, Prog. Polym. Sci. 100 (2020) 101182. [23] F. Yang, M. Antonietti, Artificial humic acids: sustainable materials against climate change, Adv. Sci. 7 (5) (2020) 1902992. [24] C.X. Song, S.Q. Sun, B. Xia, Q.W. Zhang, L.J. Liu, Y. Hidawa, T.X. Li, L.A. Zhou, Y. Gao, S.Q. Yang, W. Zhang, Enhanced maturation and heavy metal stabilization by humic substance addition during dredged sediments composting, J. Environ. Chem. Eng. 13 (4) (2025) 117438. [25] B.R. Moura, V.S. Santos, G. Metzker, O.P. Ferreira, M.C. Bisinoti, M. Boscolo, A.B. Moreira, Oxidation of hydrochar produced from byproducts of the sugarcane industry for the production of humic-like substances: Characterization and interaction study with Cu(II), Chemosphere 324 (2023) 138260. [26] W.J. Xiong, M.Y. Zhang, Y.Y. Wei, D. Song, Y.P. Luo, J.T. Wang, S. Cheng, R. Xiao, Co-hydrothermal carbonization of lignocellulosic biomass and swine manure for humic substance abundant target products: Impacts of hydrothermal temperature and feedstock composition, J. Environ. Chem. Eng. 13 (3) (2025) 116280. [27] Z.Q. Pan, H.J. Huang, C.F. Zhou, F.Y. Lai, X.W. He, J.B. Xiong, X.F. Xiao, Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents, J. Cent. South Univ. 26 (10) (2019) 2771-2784. [28] X.Z. Yuan, H.J. Huang, G.M. Zeng, H. Li, J.Y. Wang, C.F. Zhou, H.N. Zhu, X.K. Pei, Z.F. Liu, Z.T. Liu, Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge, Bioresour. Technol. 102 (5) (2011) 4104-4110. [29] P.Z. Zhang, X.X. Zhang, Y.F. Li, L.J. Han, Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure, Bioresour. Technol. 302 (2020) 122850. [30] T. Yang, H.J. Huang, F.Y. Lai, Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China, Trans. Nonferrous Met. Soc. China 27 (10) (2017) 2249-2259. [31] X.F. Xiao, Y.C. Chang, F.Y. Lai, H.S. Fang, C.F. Zhou, Z.Q. Pan, J.X. Wang, Y.J. Wang, X. Yin, H.J. Huang, Effects of rice straw/wood sawdust addition on the transport/conversion behaviors of heavy metals during the liquefaction of sewage sludge, J. Environ. Manage. 270 (2020) 110824. [32] H.J. Huang, X.Z. Yuan, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200 (2016) 991-998. [33] Z.M. Luo, X.Y. Huang, C.F. Zhou, M. Jiang, X.P. Liu, H.J. Huang, Migration/transformation characteristics of heavy metals and polycyclic aromatic hydrocarbons in the co-liquefaction treatment of pig manure and lignocellulosic biomass, Chin. J. Chem. Eng. 82 (2025) 222-234. [34] H.J. Huang, X.Z. Yuan, G.M. Zeng, H.N. Zhu, H. Li, Z.F. Liu, H.W. Jiang, L.J. Leng, W.K. Bi, Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge, Bioresour. Technol. 102 (22) (2011) 10346-10351. [35] E.B. de Sousa, J.B. Netto-Ferreira, C.M. Barra, B.J.R. Alves, O.R. La, J.G. Rocha Junior, Sustainable wet method for determination of total organic carbon in soils using potassium permanganate as a substitute for potassium dichromate, J. Soil Sci. Plant Nutr. 25 (1) (2025) 322-330. [36] X.M. Chen, D.Q. Zhang, G.H. Liang, Q.Y. Qiu, J.X. Liu, G.Y. Zhou, S.Z. Liu, G.W. Chu, J.H. Yan, Effects of precipitation on soil organic carbon fractions in three subtropical forests in Southern ChinaFree, J. Plant Ecol. 9 (1) (2016) 10-19. [37] C. Zaccone, P. Soler-Rovira, C. Plaza, C. Cocozza, T.M. Miano, Variability in As, Ca, Cr, K, Mn, Sr, and Ti concentrations among humic acids isolated from peat using NaOH, Na4P2O7 and NaOH+Na4P2O7 solutions, J. Hazard. Mater. 167 (1-3) (2009) 987-994. [38] Q.Q. Lang, Y.C. Guo, Q.F. Zheng, Z.G. Liu, C. Gai, Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior, Bioresour. Technol. 266 (2018) 242-248. [39] Z.H. Sun, J. Li, X.J. Wang, S.Q. Xia, J.F. Zhao, Enhanced heavy metal stabilization and phosphorus retention during the hydrothermal carbonization of swine manure by in situ formation of MgFe2O4, Waste Manag. 174 (2024) 96-105. [40] H. Luisa de Castro e Silva, S. Ghysels, A.A. Robles-Aguilar, C. Akyol, F. Ronsse, E. Meers, Hydrothermal carbonisation of manure-derived digestates: chemical properties and heavy metals distribution in end-products, Chem. Eng. J. 496 (2024) 154110. [41] W.S. Shi, C.G. Liu, D.H. Ding, Z.F. Lei, Y.N. Yang, C.P. Feng, Z.Y. Zhang, Immobilization of heavy metals in sewage sludge by using subcritical water technology, Bioresour. Technol. 137 (2013) 18-24. [42] Y.X. Zhang, W.Q. Ma, X. Sun, J. Jiang, D.P. Li, G.M. Tang, W.L. Xu, H.T. Jia, Biochar aged for five years altered carbon fractions and enzyme activities of sandy soil, Land 12 (8) (2023) 1645. [43] C.F. Song, S.D. Shan, C. Yang, C. Zhang, X.Q. Zhou, Q. Ma, K. Yrjala, H.B. Zheng, Y.C. Cao, The comparison of dissolved organic matter in hydrochars and biochars from pig manure, Sci. Total Environ. 720 (2020) 137423. [44] K. Wu, Y. Gao, G.K. Zhu, J.J. Zhu, Q.X. Yuan, Y.Q. Chen, M.Z. Cai, L. Feng, Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures, J. Anal. Appl. Pyrolysis 127 (2017) 335-342. [45] R.P. Ipiales, A.F. Mohedano, E. Diaz-Portuondo, E. Diaz, M.A. de la Rubia, Co-hydrothermal carbonization of swine manure and lignocellulosic waste: a new strategy for the integral valorization of biomass wastes, Waste Manag. 169 (2023) 267-275. [46] Y.N. Bai, R. Huang, S. Li, X.L. Li, Q.J. Fan, S.Q. Liu, L.N. Hu, Potential of calcium-modified biochar for soil nutrient and carbon sequestration in citrus orchards, Agriculture 14 (12) (2024) 2222. [47] T. Sun, G. Gao, W.H. Yang, Y.B. Sun, Q.Q. Huang, L. Wang, X.F. Liang, High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe-Mn oxide modified biochar and its microbial community responses, Biochar 6 (1) (2024) 57. [48] M.H. Jiang, C.B. Li, W.C. Gao, K. Cai, Y. Tang, J.Z. Cheng, Comparison of long-term effects of biochar application on soil organic carbon and its fractions in two ecological sites in Karst regions, Geoderma Reg. 28 (2022) e00477. [49] B.J. Wu, M. Zhang, Z. Zhai, H.X. Dai, M.M. Yang, Y.L. Zhang, T.B. Liang, Soil organic carbon, carbon fractions, and microbial community under various organic amendments, Sci. Rep. 14 (1) (2024) 25431. [50] R.P. Ipiales, D. Pimentel-Betancurt, E. Diaz, A. de la Rubia, J.J. Rodriguez, A.F. Mohedano, Energy recovery from garden and park waste by hydrothermal carbonization with process water recycling, ACS Sustainable Chem. Eng. 12 (13) (2024) 5229-5240. [51] J.H. Hsu, S.L. Lo, Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure, Environ. Pollut. 104 (2) (1999) 189-196. [52] Y.N. Shan, J.H. Chen, L. Wang, F. Li, X.H. Fu, Y.Q. Le, Influences of adding easily degradable organic waste on the minimization and humification of organic matter during straw composting, J. Environ. Sci. Health B 48 (5) (2013) 384-392. [53] N. Shi, Q.Y. Liu, R.M. Ju, X. He, Y.L. Zhang, S.Y. Tang, L.L. Ma, Condensation of α-carbonyl aldehydes leads to the formation of solid humins during the hydrothermal degradation of carbohydrates, ACS Omega 4 (4) (2019) 7330-7343. [54] F. Yang, S.S. Zhang, K. Cheng, M. Antonietti, A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation, Sci. Total Environ. 686 (2019) 1140-1151. [55] K. Jindo, T. Sonoki, K. Matsumoto, L. Canellas, A. Roig, M.A. Sanchez-Monedero, Influence of biochar addition on the humic substances of composting manures, Waste Manag. 49 (2016) 545-552. [56] Y. Zhou, A. Selvam, J.W.C. Wong, Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues, Bioresour. Technol. 168 (2014) 229-234. [57] X.T. Song, Y.X. Guo, X.Y. Yang, P. Zhang, B.F. Wang, Influence of coal slime on migration behavior and ecological risk of heavy metals during hydrothermal carbonation of sewage sludge, J. Environ. Chem. Eng. 13 (1) (2025) 115031. [58] G.C. Shan, J.Q. Xu, Z.W. Jiang, M.Q. Li, Q.L. Li, The transformation of different dissolved organic matter subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting, Waste Manag. 87 (2019) 636-644. [59] T. Zhou, L.H. Wu, Y.M. Luo, P. Christie, Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils, Environ. Pollut. 232 (2018) 514-522. |
| [1] | Zimin Luo, Xinyi Huang, Chunfei Zhou, Min Jiang, Xiaoping Liu, Huajun Huang. Migration/transformation characteristics of heavy metals and polycyclic aromatic hydrocarbons in the co-liquefaction treatment of pig manure and lignocellulosic biomass [J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 222-234. |
| [2] | Siwen Huang, Kui Wang, Haibo Wang, Li Lv, Tao Zhang, Wenxiang Tang, Zongpeng Zou, Shengwei Tang. Comprehensive utilization of titanium-bearing blast furnace slag by H2SO4 roasting and stepwise precipitation [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 24-37. |
| [3] | Zhengyong Xu, Yan Du, Yan Liu, Jintao Ou, Jingwei Chen, Huaming Xie. Effect analysis on degradation mechanism of dioxins under hydrothermal conditions by molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 274-280. |
| [4] | Qin Cheng, Pengfei Ma, Ruize Yin, Chaodi Wang, Weiwei Xiong, Zhongyao Duan, Fu Yang, Junhao Zhang. Zn2+ significantly enhances the performance of petal-like Co-naphthalenetetracarboxylic acid MOF as an anode material for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 164-171. |
| [5] | Kun Wang, Wenzheng Liang, Sheng Yao, Haifeng Lv, Cuiping Wang. Migration pathway of nitrogen and phosphorus in municipal sludge during three thermochemical transformation ways [J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 34-41. |
| [6] | Guangzhong Cao, Kaichen Zhang, Xiao Liu, Shiyi Zhang, Chenxiao Jiang, Tongwen Xu. Electrodialysis and electrolysis for efficient and sustainable recycling of spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 45-63. |
| [7] | Zhenhui Lv, Jianan Li, Dong Xue, Tao Yang, Gang Wang, Chong Peng. Facile molybdenum and aluminum recovery from spent hydrogenation catalyst [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 72-78. |
| [8] | Jiayu Zhang, Zhihao Zeng, Lin Yue, Chunran Zhao, Xin Hu, Leihong Zhao, Xiuwen Wang, Yiming He. Enhanced photocatalytic nitrogen fixation performance via in situ constructing BiO2-x/NaNbO3 heterojunction [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 92-100. |
| [9] | Xing Zhong, Yubin Tan, Siyuan Wu, Caixia Hu, Kai Guo, Yongchuan Wu, Neng Yu, Mingyang Ma, Ying Dai. Efficient and rapid capture of uranium(VI) in wastewater via multi-amine modified β-cyclodextrin porous polymer [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 144-155. |
| [10] | Wei Guo, Yan Zhang, Xiaxin Lei, Shuang Wang. An effective strategy of constructing multi-metallic oxides of ZnO/CoNiO2/CoO/C microflowers for improved supercapacitive performance [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 1-8. |
| [11] | Min Lin, Yuhao Yan, Xiaoxian Li, Rui Li, Yulong Wu. Hydrothermal hydrogenation/deoxygenation of palmitic acid to alkanes over Ni/activated carbon catalyst [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 8-18. |
| [12] | A. Safiulina, S. Khusnutdinov, I. Khusnutdinov, I. Goncharova. Continuous monitoring of residual water content in boiling water-hydrocarbon emulsions during thermomechanical dehydration [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 118-123. |
| [13] | Vaishnavi Mahadevan, Sathishkumar Kannaiyan, Gopinath Kannappan Panchamoorthy. Beneficial synergetic effect of feedstock characteristics and reaction conditions on bio crude production from hydrothermal liquefaction of mixed residential waste [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 46-61. |
| [14] | Qingbo Yu, Xianhua Li, Qingping Wang. Effect of Al(OH)3 prepared from fly ash on the structural and catalytic properties of g-C3N4-based materials [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 44-51. |
| [15] | Muhammad Tayyab Butt, Hengbo Yin. Effective removal of chromium, copper, and nickel heavy metal ions from industrial electroplating wastewater by in situ oxidative adsorption using sodium hypochlorite as oxidant and sodium trititanate nanorod as adsorbent [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 312-330. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
