›› 2017, Vol. 25 ›› Issue (9): 1121-1136.DOI: 10.1016/j.cjche.2017.03.034
• Fluid Dynamics and Transport Phenomena • Next Articles
Saheera Azmi Hazarika, Tuhin Deshamukhya, Dipankar Bhanja, Sujit Nath
Received:
2016-05-21
Revised:
2017-03-23
Online:
2017-10-11
Published:
2017-09-28
Saheera Azmi Hazarika, Tuhin Deshamukhya, Dipankar Bhanja, Sujit Nath
通讯作者:
Dipankar Bhanja,E-mail:dipankar@mech.nits.ac.in
Saheera Azmi Hazarika, Tuhin Deshamukhya, Dipankar Bhanja, Sujit Nath. Thermal analysis of a constructal T-shaped porous fin with simultaneous heat and mass transfer[J]. , 2017, 25(9): 1121-1136.
Saheera Azmi Hazarika, Tuhin Deshamukhya, Dipankar Bhanja, Sujit Nath. Thermal analysis of a constructal T-shaped porous fin with simultaneous heat and mass transfer[J]. , 2017, 25(9): 1121-1136.
[1] R. Baby, C. Balaji, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, Int. J. Heat Mass Transf. 55(2012) 1642-1649. [2] R. Baby, C. Balaji, Thermal optimization of PCM based pin fin heat sinks:An experimental study, Appl. Therm. Eng. 54(2013) 65-77. [3] N. Gnanasekaran, C. Balaji, Markov Chain Monte Carlo (MCMC) approach for the determination of thermal diffusivity using transient fin heat transfer experiments, Int. J. Therm. Sci. 63(2013) 46-54. [4] M. Sasikumar, C. Balaji, Optimization of convective fin systems:A holistic approach, Heat Mass Transf. 39(2002) 57-68. [5] M. Sasikumar, C. Balaji, A holistic optimization of convecting-radiating fin systems, J. Heat Transf. 124(2002) 1110-1116. [6] B. Kundu, D. Barman, An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions, Energy 36(5) (2011) 2572-2588. [7] M.H. Sharqawy, S.M. Zubair, Efficiency and optimization of an annular fin with combined heat and mass transfer-An analytical solution, Int. J. Refrig. 30(2007) 751-757. [8] M.H. Sharqawy, S.M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer-An analytical solution, Appl. Therm. Eng. 28(2008) 2279-2288. [9] B. Kundu, K.S. Lee, Analytic solution for heat transfer of wet fins on account of all nonlinearity effects, Energy 41(2012) 354-367. [10] B. Kundu, A new methodology for determination of an optimum fin shape under dehumidifying conditions, Int. J. Refrig. 33(2010) 1105-1117. [11] B. Kundu, Approximate analytic solution for performances of wet fins with a polynomial relationship between humidity ratio and temperature, Int. J. Therm. Sci. 48(2009) 2108-2118. [12] B. Kundu, A. Miyara, An analytical method for determination of the performance of a fin assembly under dehumidifying conditions:A comparative study, Int. J. Refrig. 32(2009) 369-380. [13] B. Kundu, K.S. Lee, A novel analysis for calculating the smallest envelope shape of wet fins with a nonlinear mode of surface transport, Energy 44(2012) 527-543. [14] S. Sabbaghi, A. Rezaii, Gh.R. Shahri, M.S. Baktash, Mathematical analysis for the efficiency of a semi-spherical fin with simultaneous heat and mass transfer, Int. J. Refrig. 34(2011) 1877-1882. [15] X. Xu, L. Xia, M. Chan, S. Deng, A Modified McQuiston model for evaluating efficiency of wet fin considering effect of condensate film moving on fin surface, Energy Convers. Manag. 49(2008) 2403-2408. [16] S. Kiwan, Thermal analysis of natural convection porous fins, Transp. Porous Media 67(2007) 17-29. [17] S. Kiwan, M.A. Al-Nimr, Using porous fins for heat transfer enhancement, J. Heat Transf. 123(2001) 790-795. [18] B. Kundu, D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrig. 34(2011) 337-352. [19] M. Hatami, D.D. Ganji, Thermal performance of circular convective-radiative porous fins with different section shapes and materials, Energy Convers. Manag. 76(2013) 185-193. [20] M. Hatami, A. Hasanpour, D.D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers. Manag. 74(2013) 9-16. [21] D. Bhanja, B. Kundu, P.K. Mandal, Thermal analysis of porous pin fin used for electronic cooling, Process. Eng. 64(2013) 956-965. [22] B. Kundu, D. Bhanja, K.S. Lee, A model on the basis of analytics for computing maximum heat transfer in porous fins, Int. J. Heat Mass Transf. 55(2012) 7611-7622. [23] R. Das, K.T. Ooi, Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Convers. Manag. 66(2013) 211-219. [24] S. Saedodin, M. Olank, Temperature distribution in porous fins in natural convection condition, J. Am. Sci. 7(6) (2011) 476-481. [25] S.Y. Kim, J.W. Paek, B.H. Kang, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, J. Heat Transf. 122(2000) 572-578. [26] M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins:Exponential fins versus straight fins, Int. J. Refrig. 46(2014) 158-164. [27] M. Hatami, D.D. Ganji, Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, Int. J. Refrig. 40(2014) 140-151. [28] M. Hatami, G.H.R. Mehdizadeh Ahangar, D.D. Ganji, K. Boubaker, Refrigeration efficiency analysis fully wet semi-spherical porous fins, Energy Convers. Manag. 84(2014) 533-540. [29] A. Vahabzadeh, D.D. Ganji, M. Abbasi, Analytical investigation of porous pin fins with variable section in fully-wet conditions, Case Stud. Therm. Eng. 5(2015) 1-12. [30] A. Bejan, Constructal theory network of conducting paths for cooling a heat generating volume, Int. J. Heat Mass Transf. 40(1997) 799-816. [31] A. Bejan, M. Almogbel, Constructal T-shaped fins, Int. J. Heat Mass Transf. 43(2000) 2101-2115. [32] G. Lorenzini, M. Medici, L.A.O. Rocha, Convective analysis of constructal T-shaped fins, J. Eng. Thermophys. 23(2014) 98-104. [33] S.A. Hazarika, D. Bhanja, S. Nath, B. Kundu, Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer, Energy 84(2015) 303-316. [34] B. Kundu, D. Bhanja, Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer co-efficient, Int. J. Heat Mass Transf. 53(2010) 254-267. [35] D. Bhanja, B. Kundu, Thermal analysis of a constructal T-shaped porous fin with radiation effects, Int. J. Refrig. 34(2011) 1483-1496. [36] L.G. Chen, Progress in study on constructal theory and its applications, Sci. China Technol. Sci. 55(3) (2012) 802-820. [37] L.G. Chen, H.J. Feng, Multi-objective Constructal Optimizations for Fluid Flow. Heat Mass Transfer Processes, Science Press, Beijing (in Chinese), 2016. [38] H.J. Feng, L.G. Chen, F.R. Sun, "Volume-point" heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements at micro and nanoscales, Sci. China Technol. Sci. 55(3) (2012) 779-794. [39] L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization for "disc-point" heat conduction at micro and nanoscales, Int. J. Heat Mass Transf. 67(2013) 704-711. [40] H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions, Chin. Sci. Bull. 59(20) (2014) 2470-2477. [41] H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal design for "+" shaped high conductive pathways over a square body, Int. J. Heat Mass Transf. 91(2015) 62-69. [42] L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization for leaf-like body based on maximization of heat transfer rate, Int. Commun. Heat Mass Transfer 71(2016) 157-163. [43] S.W. Gong, L.G. Chen, Z.H. Xie, H.J. Feng, F.R. Sun, Constructal optimization of cylindrical heat sources with forced convection based on entransy dissipation minimization, Sci. China Technol. Sci. 59(4) (2016) 631-639. [44] H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal entransy dissipation rate minimization for helm-shaped fin with inner heat sources, Sci. China Technol. Sci. 58(6) (2015) 1084-1090. [45] S.W. Gong, L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization of cylindrical heat sources surrounded with a fin based on minimization of hot spot temperature, Int. Commun. Heat Mass Transfer 68(2015) 1-7. [46] L.G. Chen, Q.H. Xiao, Z.H. Xie, F.R. Sun, Constructal entransy dissipation rate minimization for tree-shaped assembly of fins, Int. J. Heat Mass Transf. 67(2013) 506-513. [47] L.G. Chen, Q.H. Xiao, Z.H. Xie, F.R. Sun, T-shaped assembly of fins with constructal entransy dissipation rate minimization, Int. Commun. Heat Mass Transfer 39(10) (2012) 1556-1562. [48] H.J. Feng, L.G. Chen, F.R. Sun, Constructal entransy dissipation rate minimization for leaf-like fins, Sci. China Technol. Sci. 55(2) (2012) 515-526. [49] Z.H. Xie, L.G. Chen, F.R. Sun, Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective, Sci. China Technol. Sci. 53(10) (2010) 2756-2764. [50] M. Turkyilmazoglu, Nonlinear heat transfer in rectangular fins and exact solutions with temperature dependent properties, J. Therm. Sci. Technol. 35(2015) 29-35. [51] M. Turkyilmazoglu, Exact heat-transfer solutions to radial fins of general profile, J. Thermophys. Heat Transf. 30(2016) 89-93. [52] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int. J. Therm. Sci. 55(2012) 69-75. [53] T.H. Chilton, A.P. Colburn, Mass transfer (absorption) coefficients, Ind. Eng. Chem. 26(1934) 1183-1187. [54] J.K. Zhou, Differential Transform and Its Applications for Electrical Circuits, Huarjung University Press, Wuuhahn, China (in Chinese), 1986. [55] J.H. Lienhard IV, Lienhard VJH, A Heat Transfer Textbook, Phlogiston Press, Cambridge, Massachusetts, 2008. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[5] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[6] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[7] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[8] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[9] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 193-201. |
[10] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[11] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[12] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[13] | Dandan Ren, Shanshan Xiang, Yuwen Yan, Ruiying Kong, Xingchu Gong. Design and optimization of purification process of sinomenine hydrochloride [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 63-72. |
[14] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[15] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 365
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1825
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||