[1] B. Freegah, A.A. Hussain, A.H. Falih, H. Towsyfyan, CFD analysis of heat transfer enhancement in plate-fin heat sinks with fillet profile:Investigation of new designs, Thermal Sci. Eng. Prog. 17(2020) 100458. [2] Y. Li, L. Gong, M. Xu, Y. Joshi, Hydraulic and thermal performances of metal foam and pin fin hybrid heat sink, Appl. Therm. Eng. 166(2020) 114665. [3] M. Ghasemi, A. Khataee, P. Gholami, R.D.C. Soltani, A. Hassani, Y. Orooji, In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin, J. Environ. Manag. 267(2020) 110629. [4] A.J. Sisi, M. Fathinia, A. Khataee, Y. Orooji, Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process:mechanism and ecotoxicological analysis, J. Mol. Liq. 308(2020) 113018. [5] S.A.A. Alem, R. Latifi, S. Angizi, N. Mohamadbeigi, M. Rajabi, E. Ghasali, Yasin Orooji, Development of metal matrix composites and nanocomposites via double-pressing double-sintering (DPDS) method, Materials Today Communications, 2020. https://doi.org/10.1016/j.mtcomm.2020.101245. [6] Y. Orooji, A. Alizadeh, E. Ghasali, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, Coreinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds, Ceram. Int. 45(16) (2019) 20844-20854. [7] Y. Orooji, E. Ghasali, M. Moradi, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering, Ceram. Int. 45(13) (2019) 16288-16296. [8] Y. Orooji, M.R. Derakhshandeh, E. Ghasali, M. Alizadeh, M.S. Asl, Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite, Ceram. Int. 45(13) (2019) 16015-16021. [9] C.J. Ho, Y.J. Hsieh, S. Rashidi, Y. Orooji, W.M. Yan, Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study, Int. Comm. Heat Mass Transfer 112(2020) 104477. [10] Z. Chamanroy, M. Khoshvaght-Aliabadi, Analysis of straight and wavy miniature heat sinks equipped with straight and wavy pin-fins, Int. J. Therm. Sci. 146(2019) 106071. [11] M. Izadi, M.A. Sheremet, S.A.M. Mehryan, Natural convection of a hybrid nanofluid affected by an inclined periodic magnetic field within a porous medium, Chin. J. Phys. 65(2020) 447-458. [12] M. Izadi, B. Bastani, M.A. Sheremet, Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach, Adv. Powder Technol. 31(2020) 2493-2504. [13] M. Izadi, M.A. Mohammad, A. Razmjou, K. Liang, M. Asadnia, V. Chen, Metal-Organic-Framework-Based Enzymatic Microfluidic Biosensor via Surface Patterning and Biomineralization, ACS Appl. Mater. Interfaces 11(2) (2019) 1807-1820. [14] Z. Changani, A. Razmjou, A.M. Taheri-Kafrani, M.E. Warkiani, H.F. Oztop, M. Asadnia, Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry, Chemosphere 249(2020), 126079. [15] M. Izadi, R. Mohebbi, H. Sajjadi, A.A. Delouei, LTNE modeling of magneto-Ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field, Physica A. 535(2019) 122394. [16] Mohsen Izadi, Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber, Chin. J. Chem. Eng. 28(2020) 1203-1213. [17] M. Asadnia, A. Razmjou, O. Ghaebi, H.C. Yang, M.E. Warkiani, J. Hou, V. Chen, Preparation of Iridescent 2D Photonic Crystals by Using a Mussel-Inspired Spatial Patterning of ZIF-8 with Potential Applications in Optical Switch and Chemical Sensor, ACS Appl. Mater. Interfaces 9(43) (2017) 38076-38080. [18] S.A.M. Mehryan, M. Izadi, Z. Namazian, A.J. Chamkha, Natural convection of multiwalled carbon nanotube-Fe3O4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity, J. Therm. Anal. Calorim. 138(2019) 1541-1555. [19] B. He, X. Luo, F. Yu, J. Zhou, J. Zhang, Flow boiling characteristics in bi-porous minichannel heat sink sintered with copper woven tape, Int. J. Heat Mass Transf. 158(2020) 119988. [20] X. Liu, Y. Li, H. Zhang, Y. Liu, X. Chen, Effect of pore structure on heat transfer performance of lotus-type porous copper heat sink, Int. J. Heat Mass Transf. 144(2019) 118641. [21] M. Khoshvaght-Aliabadi, S.M. Hassani, S.H. Mazloumi, M. Nekoei, Effects of nooks configuration on hydrothermal performance of zigzag channels for nanofluidcooled microelectronic heat sink, Microelectron. Reliab. 79(2017) 153-165. [22] W. Duangthongsuk, S. Wongwises, An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures, Exp. Thermal Fluid Sci. 87(2017) 30-39. [23] N. Tran, Y.J. Chang, C.C. Wang, Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2, Int. J. Heat Mass Transf. 117(2018) 787-798. [24] J. Alsarraf, A. Shahsavar, M. Khaki, R. Ranjbarzadeh, A. Karimipour, M. Afrand, Numerical investigation on the effect of four constant temperature pipes on natural cooling of electronic heat sink by nanofluids:A multifunctional optimization, Adv. Powder Technol. 31(2020) 416-432. [25] M.R. Hajmohammadi, S. Gholamrezaie, A. Ahmadpour, Z. Mansoori, Effects of applying uniform and non-uniform external magnetic fields on the optimal design of microchannel heat sinks, Int. J. Mech. Sci. 186(2020) 105886. [26] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME FED. 231(1995) 99-105. [27] M. Izadi, M. Ghalambaz, S.A.M. Mehryan, Location impact of a pair of magnetic sources on melting of a magneto-Ferro phase change substance, Chin. J. Phys. 65(2020) 377-388. [28] M. Izadi, M. Ghalambaz, S.A.M. Mehryan, Location impact of a pair of magnetic sources on melting of a magneto-Ferro phase change substance, Chin. J. Phys. 65(2020) 377-388. [29] Kh. Hosseinzadeh, S. Roghani, A. Asadi, A. Mogharrebi, D.D. Ganji, Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor, Int. J. Num. Methods Heat Fluid Flow (2020) https://doi.org/10.1108/HFF-02-2020-0095. [30] M. Izadi, S.A. Mohammadi, S.A.M. Mehryan, T.F. Yang, M.A. Sheremet, Thermogravitational convection of magnetic micropolar nanofluid with coupling between energy and angular momentum equations, Int. J. Heat Mass Transf. 145(2019) 118748. [31] R. Mohebbi, S.A.M. Mehryan, M. Izadi, O. Mahian, Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants, J. Therm. Anal. Calorim. 137(2019) 1719-1733. [32] M. Izadi, S.M.R. Hashemi Pour, A.K. Yasuri, A.J. Chamkha, Mixed convection of a nanofluid in a three-dimensional channel, J. Therm. Anal. Calorim. 136(2019) 2461-2475. [33] M. Izadi, M.M. Shahmardan, A.M. Rashidi, Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink, Transport Phenomena Nano Micro Scales 1(2013) 53-63. [34] Kh. Hosseinzadeh, S. Roghani, A.R. Mogharrebi, A. Asadi, M. Waqas, D.D. Ganji, Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder, Alexandria Eng. J. (2020)https://doi.org/10.1016/j.aej.2020.04.037. [35] M. Gholinia, Kh. Hosseinzadeh, D.D. Ganji, Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius, Case Stud. Thermal Eng. 21(2020) 100666. [36] Kh. Hosseinzadeh, A.R. Mogharrebi, A. Asadi, M. Sheikhshahrokhdehkordi, S. Mousavisani, D.D. Ganji, Entropy generation analysis of mixture nanofluid (H2O/c2H6O2)-Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation, Int. J. Ambient Energy (2019)https://doi.org/10.1080/01430750.2019.1681294. [37] Kh. Hosseinzadeh, A. Asadi, A.R. Mogharrebi, M.E. Azari, D.D. Ganji, Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect, J. Therm. Anal. Calorim. (2020)https://doi.org/10.1007/s10973-020-09347-x. [38] A.K. Rostami, Kh. Hosseinzadeh, D.D. Ganji, Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with complex snowflake shaped inner wall, Waves Random Complex Media (2020)https://doi.org/10.1080/17455030.2020.1758358. [39] H.E. Ahmed, M.I. Ahmed, I.M.F. Seder, B.H. Salman, Experimental investigation for sequential triangular double-layered microchannel heat sink with nanofluids, Int. Commun. Heat Mass Transfer 77(2016) 104-115. [40] M.M. Sarafraz, V. Nikkhah, M. Nakhjavani, A. Arya, Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel, Appl. Therm. Eng. 123(2017) 29-39. [41] M. Zargartalebi, J. Azaiez, Heat transfer analysis of nanofluid based microchannel heat sink, Int. J. Heat Mass Transf. 127(2018) 1233-1242. [42] P. Barnoon, D. Toghraie, Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium, Powder Technol. 325(2018) 78-91. [43] P. Barnoon, D. Toghraie, F. Eslami, B. Mehmandoust, Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field:single-phase and two-phase approaches, Comput. Math. Appl. 77(2019) 662-692. [44] A.A.A.A. Al-Rashed, A. Shahsavar, O. Rasooli, M.A. Moghimi, A. Karimipour, M.D. Tran, Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink, Int. Commun. Heat Mass Transfer 104(2019) 118-126. [45] A.A.A.A. Al-Rashed, A. Shahsavar, S. Entezari, M.A. Moghimi, S.A. Adio, T.K. Nguyen, Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink:thermal performance and thermodynamic considerations, Appl. Therm. Eng. 155(2019) 247-258. [46] A. Shahsavar, M.H. Baseri, A.A.A.A. Al-Rashed, M. Afrand, Numerical investigation of forced convection heat transfer and flow irreversibility in a novel heatsink with helical microchannels working with biologically synthesized water-silver nano-fluid, Int. Commun. Heat Mass Transfer 108(2019) 104324. [47] M. Bahiraei, S. Heshmatian, Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene-silver nanoparticles, Energy Convers. Manag. 168(2018) 357-370. [48] A. Shahsavar, A.A.A. Al-Rashed, S. Entezari, P. Talebizadeh Sardari, Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium, Energy. 171(2019) 751-769. |