[1] D. Singh, E. Croiset, P.L. Douglas, M.A. Douglas, Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion, Energy Convers. Manag. 44(2003) 3073-3091. [2] G.T. Rochelle, Amine scrubbing for CO2capture, Science. 325(5948) (2009) 1652-1654. [3] Y. Le Moullec, M. Kanniche, Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture, Int. J. Greenh. Gas Control. 5(2011) 727-740. [4] P. Galindo, A. Schaffer, K. Brechtel, S. Unterberger, G. Scheffknecht, Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions, Fuel. 101(2012) 2-8. [5] Y.E. Kim, J.A. Lim, S.K. Jeong, Y.I. Yoon, S.T. Bae, S.C. Nam, Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions, Bull. Kor. Chem. Soc. 34(2013) 783-787. [6] R. Zhang, X. Luo, Q. Yang, H. Yu, G. Puxty, Z. Liang, Analysis for the speciation in CO2 loaded aqueous MEDA and MAPA solution using 13C NMR technology, Int. J. Greenh. Gas Control. 71(2018) 1-8. [7] C. Zheng, J. Tan, Y.J. Wang, G.S. Luo, CO2solubility in a mixture absorption system of 2-amino-2-methyl-1-propanol with glycol, Ind. Eng. Chem. Res. 51(2012) 11236-11244. [8] M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.-C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Carbon capture and storage update, Energy Environ. Sci. 7(2014) 130-189. [9] H.F. Svendsen, E.T. Hessen, T. Mejdell, Carbon dioxide capture by absorption, challenges and possibilities, Chem. Eng. J. 171(2011) 718-724. [10] J.M. Kang, A. Murnandari, M.H. Youn, W.H. Lee, Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process, Chem. Eng. J. 335(2018) 338-344. [11] L. Ji, H. Yu, B. Yu, R. Zhang, D. French, M. Grigore, X. Wang, Z. Chen, S. Zhao, Insights into carbonation kinetics of Fly ash from Victorian lignite for CO2sequestration, Energy and Fuels. 32(2018) 4569-4578. [12] L. Ji, H. Yu, B. Yu, K. Jiang, M. Grigore, X. Wang, S. Zhao, K. Li, Integrated absorptionmineralisation for energy-efficient CO2 sequestration:Reaction mechanism and feasibility of using fly ash as a feedstock, Chem. Eng. J. 352(2018) 151-162. [13] B. Yu, H. Yu, K. Li, L. Ji, Q. Yang, X. Wang, Z. Chen, M. Megharaj, A diamine-based integrated absorption-mineralization process for carbon capture and sequestration:Energy savings, fast kinetics, and high stability, Environ. Sci. Technol. 52(2018) 13629-13637. [14] L. Ji, H. Yu, K. Li, B. Yu, M. Grigore, Q. Yang, X. Wang, Z. Chen, M. Zeng, S.F. Zhao, Integrated absorption-mineralisation for low-energy CO2 capture and sequestration, Appl. Energy 225(2018) 356-366. [15] Z.S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells:Improvement of Electron lifetime and efficiency, HEMISTRY Mater. 18(2006) 2912-2916. [16] H. Zhou, R. Xun, Z. Zhou, Q. Liu, P. Wu, K. Wu, Preparation of collagen fiber/CaCO3 hybrid materials and their applications in synthetic paper, FIBERS Polym. 15(2014) 519-524. [17] W. Wei, G.H. Ma, G. Hu, D. Yu, T. Mcleish, Z.G. Su, Z.Y. Shen, Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier, J. Am. Chem. Soc. 130(2008) 15808-15810. [18] A. Murnandari, J. Kang, M.H. Youn, K.T. Park, H.J. Kim, S.P. Kang, S.K. Jeong, Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization, Korean J. Chem. Eng. 34(2017) 935-941. [19] M. Vinoba, M. Bhagiyalakshmi, A.N. Grace, D.H. Chu, S.C. Nam, Y. Yoon, S.H. Yoon, S.K. Jeong, CO2 absorption and sequestration as various polymorphs of CaCO3 using sterically hindered amine, Langmuir. 29(2013) 15655-15663. [20] M. Liu, G. Gadikota, Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy, Energy Fuel 33(2019) 1722-1733. [21] M. Arti, M.H. Youn, K.T. Park, H.J. Kim, Y.E. Kim, S.K. Jeong, Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride, Energy Fuel 31(2017) 763-769. [22] L. Ji, H. Yu, R.J. Zhang, D. French, M. Grigore, B. Yu, Effects of fly ash properties on carbonation efficiency in CO2 mineralisation, Fuel Process. Technol. 188(2019) 79-88. [23] B. Yu, H. Yu, K. Li, L. Ji, Q. Yang, Z. Chen, M. Megharaj, Integration of a diamine solvent based absorption and coal fly ash based mineralisation for CO2 sequestration, Fuel Process. Technol. 192(2019) 220-226. [24] B. Yu, K. Li, L. Ji, Q. Yang, K. Jiang, M. Megharaj, H. Yu, Z. Chen, Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration:A high energy-saving process for CO2 absorption and sequestration, Int. J. Greenh. Gas Control. 87(2019) 58-65. [25] D.J. Heldebrant, C.R. Yonker, P.G. Jessop, L. Phan, Organic liquid CO2 capture agents with high gravimetric CO2 capacity, Energy Environ. Sci. 1(2008) 487-493. [26] P.G. Jessop, D.J. Heldebrant, X. Li, C.A. Eckert, C.L. Liotta, Green chemistry-Reversible nonpolar-to-polar solvent, Nature. 436(2005) 1102. [27] D.J. Heldebrant, P.G. Jessop, C.A. Thomas, C.A. Eckert, C.L. Liotta, The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide, J. Org. Chem. 70(2005) 5335-5338. [28] P.K. Koech, J. Zhang, I.V. Kutnyakov, L. Cosimbescu, S.J. Lee, M.E. Bowden, T.D. Smurthwaite, D.J. Heldebrant, Low viscosity alkanolguanidine and alkanolamidine liquids for CO2 capture, RSC Adv. 3(2013) 566-572. [29] S. Ma'mun, J.P. Jakobsen, H.F. Svendsen, O. Juliussen, Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass% 2-((2-aminoethyl) amino) ethanol solution, Ind. Eng. Chem. Res. 45(2006) 2505-2512. [30] K. Zhu, H. Lu, C. Liu, K. Wu, W. Jiang, J. Cheng, S. Tang, H. Yue, Y. Liu, B. Liang, Investigation on the phase-change absorbent system MEA + solvent A (SA) + H2O used for the CO2 capture from flue gas, Ind. Eng. Chem. Res. 58(2019) 3811-3821. [31] E.E. Chang, S.Y. Pan, Y.H. Chen, C.S. Tan, P.C. Chiang, Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed, J. Hazard. Mater. 227(2012) 97-106. [32] T. Kim, J. Olek, Effects of sample preparation and interpretation of thermogravimetric curves on calcium hydroxide in hydrated pastes and mortars, Transp. Res. Rec. 2290(2012) 10-18. [33] I. Cota, R. Chimentao, J. Sueiras, F. Medina, The DBU-H2O complex as a new catalyst for aldol condensation reactions, Catal. Commun. 9(2008) 2090-2094. [34] Y. Wen, L. Xiang, Y. Jin, Synthesis of plate-like calcium carbonate via carbonation route, Mater. Lett. 57(2003) 2565-2571. [35] K. Wang, Y.J. Wang, G.G. Chen, G.S. Luo, J.D. Wang, Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles, Ind. Eng. Chem. Res. 46(2007) 6092-6098. [36] S. Greenberg, L. Copeland, The thermodynamic functions for the solution of calcium hydroxide in water, J. Phys. Chem. 64(1960) 1057-1059. [37] G.J. Price, M.F. Mahon, J. Shannon, C. Cooper, Composition of calcium carbonate polymorphs precipitated using ultrasound, Cryst. Growth Des. 11(2011) 39-44. [38] S.Y. Pan, P.C. Chiang, Y.H. Chen, C.S. Tan, E.E. Chang, Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model:Maximization of carbonation conversion, Appl. Energy 113(2014) 267-276. [39] S.M. Shih, C.S. Ho, Y.S. Song, J.P. Lin, Kinetics of the Reaction of Ca(OH)2 with CO2 at low temperature, Ind. Eng. Chem. Res. 38(1999) 1316-1322. [40] S.Y. Pan, T.C. Ling, A.H.A. Park, P.C. Chiang, An overview:Reaction mechanisms and modelling of CO2 utilization via mineralization, Aerosol Air Qual. Res. 18(2018) 829-848. [41] X. Yuan, S. Liu, G. Feng, Y. Liu, Y. Li, H. Lu, B. Liang, Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide, Korean J. Chem. Eng. 33(2016) 2134-2141. [42] S.J. Han, M. Yoo, D.W. Kim, J.H. Wee, Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent, Energy and Fuels. 25(2011) 3825-3834. [43] S.Y. Pan, E.E. Chang, P.C. Chiang, CO2 capture by accelerated carbonation of alkaline wastes:A review on its principles and applications, Aerosol Air Qual. Res. 12(2012) 770-791. [44] S. Kakaraniya, A. Gupta, A. Mehra, Reactive precipitation in gas-slurry systems:The CO2-ca(OH)2-CaCO3 system, Ind. Eng. Chem. Res. 46(2007) 3170-3179. [45] P.R. Gogate, Intensification of chemical processing applications using ultrasonic and microwave irradiations, Curr. Opin. Chem. Eng. 17(2017) 9-14. [46] Y. Boyjoo, V.K. Pareek, J. Liu, Synthesis of micro and nano-sized calcium carbonate particles and their applications, J. Mater. Chem. A 2(2014) 14270-14288. [47] Y. Ding, Y. Liu, Y. Ren, H. Yan, M. Wang, D. Wang, X. Lu, B. Wang, T. Fan, H. Guo, Controllable synthesis of all the anhydrous CaCO3 polymorphs with various morphologies in CaCl2-NH3-CO2 aqueous system, Powder Technol. 333(2018) 410-420. [48] H.Y. Jo, J.H. Kim, Y.J. Lee, M. Lee, S. Choh, Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions, Chem. Eng. J. 183(2012) 77-87. [49] K.L. Donata, K. Barbara, K. Jakub, Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process, J. Cryst. Growth 418(2015) 25-31. [50] F. Sha, N. Zhu, Y. Bai, Q. Li, B. Guo, T. Zhao, F. Zhang, J. Zhang, Controllable synthesis of various CaCO3 morphologies based on a CCUS idea, ACS Sustain. Chem. Eng. 4(2016) 3032-3044. [51] M. Bausach, M. Pera-titus, J. Tejero, F. Cunill, AFM observation of ca(OH)2(0001) surfaces reacted with SO2:Role of water vapour on product morphology, Chem. Lett. 35(2006) 24-25. [52] E. Ruiz-Agudo, K. Kudlacz, C.V. Putnis, A. Putnis, C. Rodriguez-Navarro, Dissolution and carbonation of portlandite[Ca(OH)2] single crystals, Environ. Sci. Technol. 47(2013) 11342-11349. [53] B. Feng, A.K. Yong, H. An, Effect of various factors on the particle size of calcium carbonate formed in a precipitation process, Mater. Sci. Eng. A 445(2007) 170-179. |