[1] R. Pit, H. Hervet, L. Leger, Direct experimental evidence of slip in hexadecane:Solid interfaces, Phys Rev Lett 85 (5) (2000) 980-983 [2] Y. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces, Phys Rev Lett 87 (9) (2001) 096105 [3] V.S. Craig, C. Neto, D.R. Williams, Shear-dependent boundary slip in an aqueous Newtonian liquid, Phys Rev Lett 87 (5) (2001) 054504 [4] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids 14 (3) (2002) L9-L12 [5] E. Bonaccurso, M. Kappl, H.J. Butt, Hydrodynamic force measurements:Boundary slip of water on hydrophilic surfaces and electrokinetic effects, Phys Rev Lett 88 (7) (2002) 076103 [6] C. Cottin-Bizonne, J.L. Barrat, L. Bocquet, E. Charlaix, Low-friction flows of liquid at nanopatterned interfaces, Nat Mater 2 (4) (2003) 237-240 [7] C.H. Choi, K.J.A. Westin, K.S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Phys. Fluids 15 (10) (2003) 2897 [8] J. Ou, B. Perot, J.P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids 16 (12) (2004) 4635-4643 [9] Y. Orooji, M. Haddad Irani-nezhad, R. Hassandoost, A. Khataee, S. Rahim Pouran, S.W. Joo, Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay, Spectrochimica Acta Part A:Mol. Biomol. Spectrosc. 234 (2020) 118272 [10] R. Hassandoost, S.R. Pouran, A. Khataee, Y. Orooji, S.W. Joo, Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline, J. Hazard. Mater. 376 (2019) 200-211 [11] H. Karimi-Maleh, B.G. Kumar, S. Rajendran, J.Q. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, F. Karimi, Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration, J. Mol. Liq. 314 (2020) 113588 [12] H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin, Sci Rep 10 (1) (2020) 11699 [13] H. Karimi-Maleh, S. Ranjbari, B. Tanhaei, A. Ayati, Y. Orooji, M. Alizadeh, F. Karimi, S. Salmanpour, J. Rouhi, M. Sillanpää, F. Sen, Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal:Kinetic study, Environ Res 195 (2021) 110809 [14] M. Frank, D. Drikakis, N. Asproulis, Thermal conductivity of nanofluid in nanochannels, Microfluid. Nanofluidics 19 (5) (2015) 1011-1017 [15] H. Aminfar, N. Razmara, M. Mohammadpourfard, On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels, Appl. Math. Mech. 35 (12) (2014) 1541-1554 [16] C.Z. Sun, W.Q. Lu, J. Liu, B.F. Bai, Molecular dynamics simulation of nanofluid's effective thermal conductivity in high-shear-rate Couette flow, Int. J. Heat Mass Transf. 54 (11-12) (2011) 2560-2567 [17] Honarkhah. R., Bakhshana. Y., Rahmati. M., Khorshidi. J., Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermo-Physical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation, Environmental Energy and Economic Research. 2 (2018) 21-36 [18] W.Z. Cui, Z.J. Shen, J.G. Yang, S.H. Wu, Molecular dynamics simulation on flow behaviors of nanofluids confined in nanochannel, Case Stud. Therm. Eng. 5 (2015) 114-121 [19] H.B. Kang, Y.W. Zhang, M. Yang, Molecular dynamics simulation of thermal conductivity of Cu-Ar nanofluid using EAM potential for Cu-Cu interactions, Appl. Phys. A 103 (4) (2011) 1001-1008 [20] R. Kamali, A. Kharazmi, Molecular dynamics simulation of surface roughness effects on nanoscale flows, Int. J. Therm. Sci. 50 (3) (2011) 226-232 [21] M. Tohidi, D. Toghraie, The effect of geometrical parameters, roughness and the number of nanoparticles on the self-diffusion coefficient in Couette flow in a nanochannel by using of molecular dynamics simulation, Phys. B:Condens. Matter 518 (2017) 20-32 [22] H. Rahmatipour, A.R. Azimian, O. Atlaschian, Study of fluid flow behavior in smooth and rough nanochannels through oscillatory wall by molecular dynamics simulation, Phys. A:Stat. Mech. Appl. 465 (2017) 159-174 [23] P. Alipour, D. Toghraie, A. Karimipour, M. Hajian, Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation:Study the equilibrium, Phys. A:Stat. Mech. Appl. 515 (2019) 13-30 [24] N. Asproulis, D. Drikakis, Surface roughness effects in micro and nanofluidic devices, J. Comput. Theor. Nanosci. 7 (9) (2010) 1825-1830 [25] D. Toghraie, M. Hekmatifar, Y. Salehipour, M. Afrand, Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations, Chem. Phys. 527 (2019) 110505 [26] W. Gao, X. Zhang, X.T. Han, C.Q. Shen, Role of solid wall properties in the interface slip of liquid in nanochannels, Micromachines (Basel) 9 (12) (2018) E663 [27] Kim D, Darve E, Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels, Phys Rev E Stat Nonlin Soft Matter Phys 73 (5 pt 1) (2006) 051203 [28] M.M. Rashidi, S. Ghahremanian, D. Toghraie, P. Roy, Effect of solid surface structure on the condensation flow of Argon in rough nanochannels with different roughness geometries using molecular dynamics simulation, Int. Commun. Heat Mass Transf. 117 (2020) 104741 [29] S.K. Kuri, S.M. Rakibuzzaman, A. Sabah, J. Ahmed, M.N. Hasan, Effect of nanostructured surface configuration on evaporation and condensation characteristics of thin film liquid argon in a nano-scale confinement, In:AIP Conference Proceeding 1919 (2017) 020049. [30] S. Ghahremanian, A. Abbassi, Z. Mansoori, D. Toghraie, Investigation the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena, J. Mol. Liq. 311 (2020) 113310 [31] L. Li, P.F. Ji, Y.W. Zhang, Molecular dynamics simulation of condensation on nanostructured surface in a confined space, Appl. Phys. A 122 (5) (2016) 1-15 [32] Y.L. He, J. Sun, Y.S. Li, W.Q. Tao, A molecular dynamics study on growth of condensation film on a solid surface, Prog. Comput. Fluid Dyn. Int. J. 9 (3/4/5) (2009) 262 [33] M.J. Liao, L.Q. Duan, Dependencies of surface condensation on the wettability and nanostructure size differences, Nanomaterials (Basel) 10 (9) (2020) E1831 [34] S.D. Stoddard, J. Ford, Numerical experiments on the stochastic behavior of a lennard-Jones gas system, Phys. Rev. A 8 (3) (1973) 1504-1512 [35] E.M. Yezdimer, A.A. Chialvo, P.T. Cummings, Examination of chain length effects on the solubility of alkanes in near-critical and supercritical aqueous solutions, J. Phys. Chem. B 105 (4) (2001) 841-847 [36] M.S. Daw., M.I. Baskes., Phys. Rev. B, Condens. Matter Mater. Phys.; 29, 6443, (1984) [37] C.L. Brooks III, Computer simulation of liquids, J. Solut. Chem. 18 (1) (1989) 99 |