Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 124-132.DOI: 10.1016/j.cjche.2021.12.029
Previous Articles Next Articles
Jian Tian1, Gen Li1, Wang He1, Kok Bing Tan1, Daohua Sun1, Junfu Wei2, Qingbiao Li1,3
Received:
2021-07-07
Revised:
2021-12-03
Online:
2023-04-08
Published:
2023-01-28
Contact:
Daohua Sun,E-mail:sdaohua@xmu.edu.cn;Junfu Wei,E-mail:jfwei@tjpu.edu.cn
Supported by:
Jian Tian1, Gen Li1, Wang He1, Kok Bing Tan1, Daohua Sun1, Junfu Wei2, Qingbiao Li1,3
通讯作者:
Daohua Sun,E-mail:sdaohua@xmu.edu.cn;Junfu Wei,E-mail:jfwei@tjpu.edu.cn
基金资助:
Jian Tian, Gen Li, Wang He, Kok Bing Tan, Daohua Sun, Junfu Wei, Qingbiao Li. Insight into the dynamic adsorption behavior of graphene oxide multichannel architecture toward contaminants[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 124-132.
Jian Tian, Gen Li, Wang He, Kok Bing Tan, Daohua Sun, Junfu Wei, Qingbiao Li. Insight into the dynamic adsorption behavior of graphene oxide multichannel architecture toward contaminants[J]. 中国化学工程学报, 2023, 53(1): 124-132.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.12.029
[1] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44 (15) (2015) 5016–5030.10.1039/c4cs00423j [2] B. Mi, Materials science. Graphene oxide membranes for ionic and molecular sieving, Science 343 (6172) (2014) 740–742.https://pubmed.ncbi.nlm.nih.gov/24531961/ [3] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335 (6067) (2012) 442–444.https://pubmed.ncbi.nlm.nih.gov/22282806/ [4] Y. Liu, Y. Huang, X.F. Duan, Van der Waals integration before and beyond two-dimensional materials, Nature 567 (7748) (2019) 323–333.https://pubmed.ncbi.nlm.nih.gov/30894723/ [5] F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44 (16) (2015) 5861–5896.https://pubmed.ncbi.nlm.nih.gov/25812036/ [6] G. Ersan, O.G. Apul, F. Perreault, T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: A review, Water Res. 126 (2017) 385–398.http://dx.doi.org/10.1016/j.watres.2017.08.010 [7] O.G. Apul, Q.L. Wang, Y. Zhou, T. Karanfil, Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon, Water Res. 47 (4) (2013) 1648–1654.http://dx.doi.org/10.1016/j.watres.2012.12.031 [8] J. Wang, B.L. Chen, B.S. Xing, Wrinkles and folds of activated graphene nanosheets as fast and efficient adsorptive sites for hydrophobic organic contaminants, Environ. Sci. Technol. 50 (7) (2016) 3798–3808.https://pubmed.ncbi.nlm.nih.gov/26938576/ [9] H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, S.B. Kim, Enhanced Cr(vi) removal using iron nanoparticle decorated graphene, Nanoscale 3 (9) (2011) 3583.10.1039/c1nr10549c [10] M.H. Xu, J. Chai, N.T. Hu, D. Huang, Y.X. Wang, X.L. Huang, H. Wei, Z. Yang, Y.F. Zhang, Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions, Nanotechnology 25 (39) (2014) 395602.https://pubmed.ncbi.nlm.nih.gov/25208570/ [11] G.X. Zhao, J.X. Li, X.M. Ren, C.L. Chen, X.K. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45 (24) (2011) 10454–10462.https://pubmed.ncbi.nlm.nih.gov/22070750/ [12] P. Yu, H.-Q. Wang, R.-Y. Bao, Z. Liu, W. Yang, B.-H. Xie, M.-B. Yang, Self-Assembled Sponge-like Chitosan/Reduced Graphene Oxide/Montmorillonite Composite Hydrogels without Cross-Linking of Chitosan for Effective Cr(VI) Sorption, ACS Sustain. Chem. Eng. 5 (2017) 1557-1566. [13] Y. Shen, X.Y. Zhu, B.L. Chen, Size effects of graphene oxide nanosheets on the construction of three-dimensional graphene-based macrostructures as adsorbents, J. Mater. Chem. A 4 (31) (2016) 12106–12118.10.1039/c6ta04112d [14] J. Zhao, Z.Y. Wang, J.C. White, B.S. Xing, Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol. 48 (17) (2014) 9995–10009.http://dx.doi.org/10.1021/es5022679 [15] L. Chen, G.S. Shi, J. Shen, B.Q. Peng, B.W. Zhang, Y.Z. Wang, F.G. Bian, J.J. Wang, D.Y. Li, Z. Qian, G. Xu, G.P. Liu, J.R. Zeng, L.J. Zhang, Y.Z. Yang, G.Q. Zhou, M.H. Wu, W.Q. Jin, J.Y. Li, H.P. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550 (7676) (2017) 380–383.https://pubmed.ncbi.nlm.nih.gov/28992630/ [16] J.J. Deng, Y. You, H. Bustamante, V. Sahajwalla, R.K. Joshi, Mechanism of water transport in graphene oxide laminates, Chem. Sci. 8 (3) (2017) 1701–1704.https://pubmed.ncbi.nlm.nih.gov/28451296/ [17] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12 (7) (2012) 3602–3608.https://pubmed.ncbi.nlm.nih.gov/22668008/ [18] T. Lee, B.S. Kim, Two-dimensional designer nanochannels for controllable ion transport in graphene oxide nanomembranes with tunable sheet dimensions, ACS Appl. Mater. Interfaces 12 (11) (2020) 13116–13126.https://pubmed.ncbi.nlm.nih.gov/32088955/ [19] R. Zambare, X.X. Song, S. Bhuvana, J.S. Antony Prince, P. Nemade, Ultrafast dye removal using ionic liquid–graphene oxide sponge, ACS Sustainable Chem. Eng. 5 (7) (2017) 6026–6035.10.1021/acssuschemeng.7b00867 [20] H.B. Huang, Y.L. Ying, X.S. Peng, Graphene oxide nanosheet: An emerging star material for novel separation membranes, J. Mater. Chem. A 2 (34) (2014) 13772–13782.10.1039/c4ta02359e [21] T. Ghosh, C. Biswas, J. Oh, G. Arabale, T. Hwang, N.D. Luong, M.H. Jin, Y.H. Lee, J.D. Nam, Solution-processed graphite membrane from reassembled graphene oxide, Chem. Mater. 24 (3) (2012) 594–599.10.1021/cm2033838 [22] Z.K. Zheng, R. Grünker, X.L. Feng, Synthetic two-dimensional materials: A new paradigm of membranes for ultimate separation, Adv. Mater. 28 (31) (2016) 6529–6545.10.1002/adma.201506237 [23] P.C. Bandara, E.T. Nadres, D.F. Rodrigues, Use of response surface methodology to develop and optimize the composition of a chitosan–polyethyleneimine–graphene oxide nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water, ACS Appl. Mater. Interfaces 11 (19) (2019) 17784–17795.10.1021/acsami.9b03601 [24] X.F. Ou, X.H. Yang, J.Q. Zheng, M.X. Liu, Free-standing graphene oxide–chitin nanocrystal composite membrane for dye adsorption and oil/water separation, ACS Sustainable Chem. Eng. 7 (15) (2019) 13379–13390.10.1021/acssuschemeng.9b02619 [25] M. Musielak, A. Gagor, B. Zawisza, E. Talik, R. Sitko, Graphene oxide/carbon nanotube membranes for highly efficient removal of metal ions from water, ACS Appl. Mater. Interfaces 11 (31) (2019) 28582–28590.https://pubmed.ncbi.nlm.nih.gov/31318194/ [26] S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Recent advances in metal-organic framework membranes for water treatment: A review, Sci. Total. Environ. 800 (2021) 149662.http://dx.doi.org/10.1016/j.scitotenv.2021.149662 [27] Q. Li, Z.S. Chen, H.H. Wang, H. Yang, T. Wen, S.Q. Wang, B.W. Hu, X.K. Wang, Removal of organic compounds by nanoscale zero-valent iron and its composites, Sci. Total. Environ. 792 (2021) 148546.http://dx.doi.org/10.1016/j.scitotenv.2021.148546 [28] L.P. Liang, F.F. Xi, W.S. Tan, X. Meng, B.W. Hu, X.K. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites, Biochar 3 (3) (2021) 255–281.http://dx.doi.org/10.1007/s42773-021-00101-6 [29] X.Y. Zhou, F.F. Wang, Y.L. Ji, W.T. Chen, J.F. Wei, Fabrication of hydrophilic and hydrophobic sites on polypropylene nonwoven for oil spill cleanup: Two dilemmas affecting oil sorption, Environ. Sci. Technol. 50 (7) (2016) 3860–3865.10.1021/acs.est.5b06007 [30] J. Tian, J.F. Wei, H. Zhang, Z.Y. Kong, Y.W. Zhu, Z. Qin, Graphene oxide-functionalized dual-scale channels architecture for high-throughput removal of organic pollutants from water, Chem. Eng. J. 359 (2019) 852–862.http://dx.doi.org/10.1016/j.cej.2018.12.048 [31] D. Chen, X.Y. Wang, T.X. Liu, X.D. Wang, J. Li, Electrically Conductive Poly(vinyl alcohol) Hybrid Films Containing Graphene and Layered Double Hydroxide Fabricated via Layer-by-Layer Self-Assembly, ACS Appl. Mater. Interfaces 2 (7) (2010) 2005–2011.10.1021/am100307v [32] Q. Zhao, X.Y. Zhu, B.L. Chen, Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water, Chem. Eng. J. 334 (2018) 1119–1127.http://dx.doi.org/10.1016/j.cej.2017.11.053 [33] Q. Liu, J.B. Shi, J.T. Sun, T. Wang, L.X. Zeng, G.B. Jiang, Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction, Angew. Chem. Int. Ed Engl. 50 (26) (2011) 5913–5917.https://pubmed.ncbi.nlm.nih.gov/21567667/ [34] W.S. Hung, C.H. Tsou, M. de Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26 (9) (2014) 2983–2990.10.1021/cm5007873 [35] Y.R. Yu, Y. Shu, L. Ye, In situ crosslinking of poly (vinyl alcohol)/graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: Intercalation structure and its wastewater treatment performance, Chem. Eng. J. 336 (2018) 306–314.http://dx.doi.org/10.1016/j.cej.2017.12.038 [36] X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, A high-performance dual-scale porous electrode for vanadium redox flow batteries, J. Power Sources 325 (2016) 329–336.http://dx.doi.org/10.1016/j.jpowsour.2016.06.048 [37] C.J. Bae, C.K. Erdonmez, J.W. Halloran, Y.M. Chiang, Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance, Adv. Mater. 25 (9) (2013) 1254–1258.https://pubmed.ncbi.nlm.nih.gov/23225168/ [38] M.Y. Kim, K. Lee, M. Choi, Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity, J. Catal. 319 (2014) 232–238.http://dx.doi.org/10.1016/j.jcat.2014.09.001 [39] J.C. Groen, W.D. Zhu, S. Brouwer, S.J. Huynink, F. Kapteijn, J.A. Moulijn, J. Pérez-Ramírez, Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication, J. Am. Chem. Soc. 129 (2) (2007) 355–360.10.1021/ja065737o [40] P. Peng, D. Stosic, A. Aitblal, A. Vimont, P. Bazin, X.M. Liu, Z.F. Yan, S. Mintova, A. Travert, Unraveling the diffusion properties of zeolite-based multicomponent catalyst by combined gravimetric analysis and IR spectroscopy (AGIR), ACS Catal. 10 (12) (2020) 6822–6830.10.1021/acscatal.0c01021 [41] X.Y. Zhou, J.F. Wei, H. Zhang, K. Liu, H. Wang, Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain, J. Hazard. Mater. 273 (2014) 61–69.http://dx.doi.org/10.1016/j.jhazmat.2014.03.029 [42] A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2 (7) (2010) 581–587.https://pubmed.ncbi.nlm.nih.gov/20571578/ [43] D.W. Boukhvalov, M.I. Katsnelson, Y.W. Son, Origin of anomalous water permeation through graphene oxide membrane, Nano Lett. 13 (8) (2013) 3930–3935.https://pubmed.ncbi.nlm.nih.gov/23859009/ [44] N. Wei, X.S. Peng, Z.P. Xu, Understanding water permeation in graphene oxide membranes, ACS Appl. Mater. Interfaces 6 (8) (2014) 5877–5883.https://pubmed.ncbi.nlm.nih.gov/24669772/ [45] X.T. Liu, H.Y. Zhang, Y.Q. Ma, X.L. Wu, L.X. Meng, Y.L. Guo, G. Yu, Y.Q. Liu, Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water, J. Mater. Chem. A 1 (5) (2013) 1875–1884.10.1039/c2ta00173j [46] F.F. Liu, J. Zhao, S.G. Wang, P. Du, B.S. Xing, Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes, Environ. Sci. Technol. 48 (22) (2014) 13197–13206.https://pubmed.ncbi.nlm.nih.gov/25353977/ [47] H. Tang, Y. Zhao, S.J. Shan, X.N. Yang, D.M. Liu, F.Y. Cui, B.S. Xing, Wrinkle- and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory, Environ. Sci. Technol. 52 (14) (2018) 7689–7697.10.1021/acs.est.8b00585 [48] Y.F. Li, H. Li, K. Zhang, K.M. Liew, The theoretical possibility of a graphene sheet spontaneously scrolling round an iron nanowire, Carbon 50 (2) (2012) 566–576.http://dx.doi.org/10.1016/j.carbon.2011.09.015 [49] J.L. Xiao, W.Y. Lv, Z. Xie, Y.Q. Tan, Y.H. Song, Q. Zheng, Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions, J. Mater. Chem. A 4 (31) (2016) 12126–12135.10.1039/c6ta04119a [50] F.L. Liu, S. Hua, C. Wang, M.Q. Qiu, L.M. Jin, B.W. Hu, Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch, Chemosphere 279 (2021) 130539.http://dx.doi.org/10.1016/j.chemosphere.2021.130539 [51] Y.L. Zhu, X.Y. He, J.L. Xu, Z. Fu, S.Y. Wu, J. Ni, B.W. Hu, Insight into efficient removal of Cr(VI) by magnetite immobilized with Lysinibacillus sp. JLT12: Mechanism and performance, Chemosphere 262 (2021) 127901.http://dx.doi.org/10.1016/j.chemosphere.2020.127901 [52] L. Shen, Z.H. Jin, W.H. Xu, X. Jiang, Y.X. Shen, Y.P. Wang, Y.H. Lu, Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel, Ind. Eng. Chem. Res. 58 (19) (2019) 7817–7824.10.1021/acs.iecr.9b01950 [53] R.M. Yu, Y.Z. Shi, D.Z. Yang, Y.X. Liu, J. Qu, Z.Z. Yu, Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants, ACS Appl. Mater. Interfaces 9 (26) (2017) 21809–21819. |
[1] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[2] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[3] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[4] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[5] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[6] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[7] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[8] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[9] | Xinyu Lu, Dandan Wang, Haoquan Guo, Pengcheng Xiu, Jiajia Chen, Yu Qin, Hossain Mahmud Robin, Chaozhong Xu, Xingguang Zhang, Xiaoli Gu. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2–ZrO2/WO3/γ-Al2O3 catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 191-201. |
[10] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[11] | Chunhua Zhang, Zhengyan Qu, Hong Jiang, Rizhi Chen, Weihong Xing. Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 87-93. |
[12] | Lu-Yue Liu, Zhuang Liu, Han-Yu Peng, Xiao-Ting Mu, Qian Zhao, Xiao-Jie Ju, Wei Wang, Rui Xie, Liang-Yin Chu. Reduced graphene oxide modified melamine sponges filling with paraffin for efficient solar-thermal conversion and heat management [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 497-506. |
[13] | Shaimaa T. Kadhum, Ghayda Yassen Alkindi, Talib M. Albayati. Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 19-28. |
[14] | Shuai Xu, Qi Zhu, Shaojie Xu, Manjing Yuan, Xuliang Lin, Wenjing Lin, Yanlin Qin, Yuliang Li. The phase behavior of n-ethylpyridinium tetrafluoroborate and sodium-based salts ATPS and its application in 2-chlorophenol extraction [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 76-82. |
[15] | Zhenming Zhang, He Zhao, Xiaohui Wang, Weiming Ni, Fengsheng Gao, Jianrong Wang, Minjin Liu, Yongli Li. HPLC and GC methods development for the analysis of key intermediate for synthesis of dicamba [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 112-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||