[1] K.Y. Oh, B.I. Epureanu, A phenomenological force model of Li-ion battery packs for enhanced performance and health management, J. Power Sources 365 (2017) 220–229. 10.1016/j.jpowsour.2017.08.058 [2] H.M. Liu, G.B. Zhu, L. Zhang, Q.T. Qu, M. Shen, H.H. Zheng, Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method, J. Power Sources 274 (2015) 1180–1187. 10.1016/j.jpowsour.2014.10.154 [3] Y. Wang, L. Zhang, Q.T. Qu, J. Zhang, H.H. Zheng, Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries, Electrochim. Acta 191 (2016) 70–80. 10.1016/j.electacta.2016.01.025 [4] H.Y. Wang, M. Yoshio, Effect of iodine treatment on the electrochemical performance of natural graphite as an anode material for lithium-ion batteries, J. Power Sources 101 (1) (2001) 35–41. 10.1016/S0378-7753(01)00510-9 [5] T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J.I. Ozaki, T. Kyotani, Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures, Carbon 125 (2017) 146–155. 10.1016/j.carbon.2017.09.049 [6] N.C. Gallego, C.I. Contescu, H.M. Meyer III, J.Y. Howe, R.A. Meisner, E.A. Payzant, M.J. Lance, S.Y. Yoon, M. Denlinger, D.L. Wood III, Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries, Carbon 72 (2014) 393–401. 10.1016/j.carbon.2014.02.031 [7] E.G. Leggesse, C.L. Chen, J.C. Jiang, Lithium diffusion in graphene and graphite: Effect of edge morphology, Carbon 103 (2016) 209–216. 10.1016/j.carbon.2016.03.016 [8] C. Menachem, Y. Wang, J. Flowers, E. Peled, S.G. Greenbaum, Characterization of lithiated natural graphite before and after mild oxidation, J. Power Sources 76 (2) (1998) 180–185. 10.1016/S0378-7753(98)00167-0 [9] T. Achiha, S. Shibata, T. Nakajima, Y. Ohzawa, A. Tressaud, E. Durand, Charge/discharge behavior of plasma-fluorinated natural graphites in propylene carbonate-containing solvent, J. Power Sources 171 (2) (2007) 932–937. 10.1016/j.jpowsour.2007.06.008 [10] S.B. Ni, J.J. Ma, J.C. Zhang, X.L. Yang, L.L. Zhang, Electrochemical performance of cobalt vanadium oxide/natural graphite as anode for lithium ion batteries, J. Power Sources 282 (2015) 65–69. 10.1016/j.jpowsour.2015.01.187 [11] W. Xie, X.K. Zhu, S.H. Yi, J.C. Kuang, H.F. Cheng, W. Tang, Y.J. Deng, Electromagnetic absorption properties of natural microcrystalline graphite, Mater. Des. 90 (2016) 38–46. 10.1016/j.matdes.2015.10.115 [12] K. Ui, J. Towada, S. Agatsuma, N. Kumagai, K. Yamamoto, H. Haruyama, K. Takeuchi, N. Koura, Influence of the binder types on the electrochemical characteristics of natural graphite electrode in room-temperature ionic liquid, J. Power Sources 196 (8) (2011) 3900–3905. 10.1016/j.jpowsour.2010.12.007 [13] L. Zou, F.Y. Kang, X.L. Li, Y.P. Zheng, W.C. Shen, J. Zhang, Investigations on the modified natural graphite as anode materials in lithium ion battery, J. Phys. Chem. Solids 69 (5–6) (2008) 1265–1271. 10.1016/j.jpcs.2007.10.096 [14] Q. Shi, W.J. Liu, Q.T. Qu, T. Gao, Y. Wang, G. Liu, V.S. Battaglia, H.H. Zheng, Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries, Carbon 111 (2017) 291–298. 10.1016/j.carbon.2016.10.008 [15] H.Y. Wang, M. Yoshio, Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery, J. Power Sources 93 (1–2) (2001) 123–129. 10.1016/S0378-7753(00)00552-8 [16] Y.P. Wu, C. Jiang, C. Wan, R. Holze, Anode materials for lithium ion batteries by oxidative treatment of common natural graphite, Solid State Ion. 156 (3–4) (2003) 283–290. 10.1016/S0167-2738(02)00680-X [17] H.Y. Wang, T. Ikeda, K. Fukuda, M. Yoshio, Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery, J. Power Sources 83 (1–2) (1999) 141–147. 10.1016/S0378-7753(99)00288-8 [18] M. Lu, Y.Y. Tian, Y. Yang, A comparison of electrochemical performance of natural graphite sulfurized by ball-milling and heat-treating as an anode for lithium ion batteries, Electrochim. Acta 54 (27) (2009) 6792–6796. 10.1016/j.electacta.2009.06.079 [19] Z.Y. Chen, P.P. Lu, H.L. Zhu, B.L. Du, T. Xie, W.H. Wang, M. Xu, AC impedance investigation and charge-discharge performance of NaOH surface-modified natural graphite, Electrochim. Acta 102 (2013) 44–50. 10.1016/j.electacta.2013.03.138 [20] X. Wu, X.L. Yang, F. Zhang, L.T. Cai, L.L. Zhang, Z.Y. Wen, Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries, Ceram. Int. 43 (12) (2017) 9458–9464. 10.1016/j.ceramint.2017.04.123 [21] X.G. Sun, S. Dai, Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries, J. Power Sources 195 (13) (2010) 4266–4271. 10.1016/j.jpowsour.2010.01.024 [22] K. Ui, S. Kikuchi, F. Mikami, Y. Kadoma, N. Kumagai, Improvement of electrochemical characteristics of natural graphite negative electrode coated with polyacrylic acid in pure propylene carbonate electrolyte, J. Power Sources 173 (1) (2007) 518–521. 10.1016/j.jpowsour.2007.04.078 [23] J.Y. Eom, Y.H. Cho, S.I. Kim, D. Han, D. Sohn, Improvements in the electrochemical performance of Li4Ti5O12-coated graphite anode materials for lithium-ion batteries by simple ball-milling, J. Alloys Compd. 723 (2017) 456–461. 10.1016/j.jallcom.2017.06.210 [24] B. Li, M.Q. Xu, B.Z. Li, Y.L. Liu, L. Yang, W.S. Li, S.J. Hu, Properties of solid electrolyte interphase formed by prop-1-ene-1, 3-sultone on graphite anode of Li-ion batteries, Electrochim. Acta 105 (2013) 1–6. 10.1016/j.electacta.2013.04.142 [25] R. Chandrasekaran, M. Koh, Y. Ozhawa, H. Aoyoma, T. Nakajima, Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application, J. Chem. Sci. 121 (3) (2009) 339–346. 10.1007/s12039-009-0039-2 [26] Y.B. Fu, C. Chen, C.C. Qiu, X.H. Ma, Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries, J. Appl. Electrochem. 39 (12) (2009) 2597–2603. 10.1007/s10800-009-9949-4 [27] M.D. Bhatt, C. O’Dwyer, Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives, Chem. Phys. Lett. 618 (2015) 208–213. 10.1016/j.cplett.2014.11.018 [28] C.W. Park, N. Kalaiselvi, C.H. Doh, S.I. Mool, M.S. Yun, Effect of sodium salt addition upon electrochemical behavior of natural graphite, Ionics 11 (3–4) (2005) 248–250. 10.1007/BF02430384 [29] W. Xia, Q. Peng, Z.Y. Zhang, L. Yang, Y.X. Fu, X.L. Wang, Effects of KPF6 on the electrochemical performance of natural graphite/Li, Ionics 21 (12) (2015) 3177–3184. 10.1007/s11581-015-1513-0 [30] S. Komaba, N. Kumagai, Y. Kataoka, Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries, Electrochim. Acta 47 (8) (2002) 1229–1239. 10.1016/S0013-4686(01)00847-7 [31] M. Fujimoto, Y. Shoji, Y. Kida, R. Ohshita, T. Nohma, K. Nishio, Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode, J. Power Sources 72 (2) (1998) 226–230. 10.1016/S0378-7753(97)02691-8 [32] H. Zheng, J. Wang, et al. Potassium salts as electrolyte additive for enhancing electrochemical performance of natural graphite anodes, Carbon 21(5) (2006) 1109-1113. [33] H.H. Zheng, K. Jiang, T. Abe, Z. Ogumi, Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes, Carbon 44 (2) (2006) 203–210. 10.1016/j.carbon.2005.07.038 [34] H.H. Zheng, G. Liu, V. Battaglia, Film-forming properties of propylene carbonate in the presence of a quaternary ammonium ionic liquid on natural graphite anode, J. Phys. Chem. C 114 (13) (2010) 6182–6189.https://doi.org/10.1021/jp910734c [35] W.J. Peng, H.Q. Li, Y. Hu, Y.Y. Liu, S.X. Song, Characterisation of reduced graphene oxides prepared from natural flaky, lump and amorphous graphites, Mater. Res. Bull. 78 (2016) 119–127. 10.1016/j.materresbull.2016.02.034 [36] O. Fromm, A. Heckmann, U.C. Rodehorst, J. Frerichs, D. Becker, M. Winter, T. Placke, Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance, Carbon 128 (2018) 147–163. 10.1016/j.carbon.2017.11.065 [37] M. Herstedt, A.M. Andersson, H. Rensmo, H. Siegbahn, K. Edström, Characterisation of the SEI formed on natural graphite in PC-based electrolytes, Electrochim. Acta 49 (27) (2004) 4939–4947. 10.1016/j.electacta.2004.06.006 [38] Z.Y. Ding, X.C. Li, T.R. Wei, Z.L. Yin, X.H. Li, Improved compatibility of graphite anode for lithium ion battery using sulfuric esters, Electrochim. Acta 196 (2016) 622–628. 10.1016/j.electacta.2016.02.205 [39] L. Tan, L. Zhang, Q.N. Sun, M. Shen, Q.T. Qu, H.H. Zheng, Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures, Electrochim. Acta 111 (2013) 802–808. 10.1016/j.electacta.2013.08.074 [40] K. Xu, S.S. Zhang, R. Jow, Electrochemical impedance study of graphite/electrolyte interface formed in LiBOB/PC electrolyte, J. Power Sources 143 (1–2) (2005) 197–202. 10.1016/j.jpowsour.2004.11.026 [41] M.Q. Li, M.Z. Qu, X.Y. He, Z.L. Yu, Electrochemical performance of Si/graphite/carbon composite electrode in mixed electrolytes containing LiBOB and LiPF6, J. Electrochem. Soc. 156 (4) (2009) A294.https://doi.org/10.1149/1.3076196 [42] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources 162 (2) (2006) 1379–1394. 10.1016/j.jpowsour.2006.07.074 [43] H.Y. Zheng, L. Tan, L. Zhang, Q.T. Qu, Z.M. Wan, Y. Wang, M. Shen, H.H. Zheng, Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells, Electrochim. Acta 173 (2015) 323–330. 10.1016/j.electacta.2015.05.039 [44] D.R. Liu, Y. Wang, Y.S. Xie, L.P. He, J. Chen, K. Wu, R. Xu, Y. Gao, On the stress characteristics of graphite anode in commercial pouch lithium-ion battery, J. Power Sources 232 (2013) 29–33. 10.1016/j.jpowsour.2012.12.110 [45] H.H. Zheng, L. Zhang, G. Liu, X.Y. Song, V.S. Battaglia, Correlationship between electrode mechanics and long-term cycling performance for graphite anode in lithium ion cells, J. Power Sources 217 (2012) 530–537. 10.1016/j.jpowsour.2012.06.045 [46] Q.X. Ma, R.H. Li, R.J. Zheng, Y.L. Liu, H. Huo, C.S. Dai, Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen, J. Power Sources 331 (2016) 112–121. 10.1016/j.jpowsour.2016.08.137 [47] Y. Wang, H.Y. Zheng, Q.T. Qu, L. Zhang, V.S. Battaglia, H.H. Zheng, Enhancing electrochemical properties of graphite anode by using poly(methylmethacrylate)-poly(vinylidene fluoride) composite binder, Carbon 92 (2015) 318–326. 10.1016/j.carbon.2015.04.084 [48] J. Li, Q.T. Qu, L.F. Zhang, L. Zhang, H.H. Zheng, A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings, J. Alloys Compd. 579 (2013) 377–383. 10.1016/j.jallcom.2013.06.097 [49] E.Y. Zhao, M.M. Chen, Z.B. Hu, D.F. Chen, L.M. Yang, X.L. Xiao, Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating, J. Power Sources 343 (2017) 345–353. 10.1016/j.jpowsour.2017.01.066 [50] J.Y. Liao, A. Manthiram, Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries, J. Power Sources 282 (2015) 429–436. 10.1016/j.jpowsour.2015.02.078 [51] H.H. Zheng, Q.N. Sun, G. Liu, X.Y. Song, V.S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources 207 (2012) 134–140. |