Chinese Journal of Chemical Engineering ›› 2023, Vol. 63 ›› Issue (11): 96-107.DOI: 10.1016/j.cjche.2023.05.009
Previous Articles Next Articles
Yanhe Han1, Han Xu1, Lei Zhang1,2, Xuejiao Ma1, Yang Man3, Zhimin Su1, Jing Wang1
Received:
2023-01-29
Revised:
2023-04-28
Online:
2024-01-08
Published:
2023-11-28
Contact:
Yanhe Han,E-mail:hanyanhe@bipt.edu.cn;Xuejiao Ma,E-mail:maxuejiao@bipt.edu.cn
Supported by:
Yanhe Han1, Han Xu1, Lei Zhang1,2, Xuejiao Ma1, Yang Man3, Zhimin Su1, Jing Wang1
通讯作者:
Yanhe Han,E-mail:hanyanhe@bipt.edu.cn;Xuejiao Ma,E-mail:maxuejiao@bipt.edu.cn
基金资助:
Yanhe Han, Han Xu, Lei Zhang, Xuejiao Ma, Yang Man, Zhimin Su, Jing Wang. An internal circulation iron–carbon micro-electrolysis reactor for aniline wastewater treatment: Parameter optimization, degradation pathways and mechanism[J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 96-107.
Yanhe Han, Han Xu, Lei Zhang, Xuejiao Ma, Yang Man, Zhimin Su, Jing Wang. An internal circulation iron–carbon micro-electrolysis reactor for aniline wastewater treatment: Parameter optimization, degradation pathways and mechanism[J]. 中国化学工程学报, 2023, 63(11): 96-107.
[1] T. Carreón, M.J. Hein, K.W. Hanley, S.M. Viet, A.M. Ruder, Bladder cancer incidence among workers exposed to o-toluidine, aniline and nitrobenzene at a rubber chemical manufacturing plant, Occup. Environ. Med. 71 (3) (2014) 175–182. [2] A. Thakuri, M. Banerjee, A. Chatterjee, Microwave-assisted rapid and sustainable synthesis of unsymmetrical azo dyes by coupling of nitroarenes with aniline derivatives, iScience 25 (6) (2022) 104497. [3] D.Q. Hu, Y.L. Zhou, X.F. Jiang, From aniline to phenol: Carbon-nitrogen bond activation via uranyl photoredox catalysis, Natl. Sci. Rev. 9 (6) (2021) nwab156. [4] X.H. Li, X.D. Jin, N.N. Zhao, I. Angelidaki, Y.F. Zhang, Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system, Water Res. 119 (2017) 67–72. [5] L.F. Ren, K. Chen, X.F. Zhang, Y.B. Xu, L. Chen, J.H. Shao, Y.L. He, Effect of aniline and antimony on anaerobic-anoxic-oxic system with novel amidoxime-modified polyacrylonitrile adsorbent for wastewater treatment, Bioresour. Technol. 351 (2022) 127082. [6] M.Y. Badi, A. Esrafili, H. Pasalari, R.R. Kalantary, E. Ahmadi, M. Gholami, A. Azari, Degradation of dimethyl phthalate using persulfate activated by UV and ferrous ions: Optimizing operational parameters mechanism and pathway, J. Environ. Health Sci. Eng. 17 (2) (2019) 685–700. [7] I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh, M. Fazlzadeh, Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water, Environ. Sci. Pollut. Res. Int. 27 (29) (2020) 36732–36743. [8] A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, M.D. Bernal, S. Ortega, Polyamide nanofiltration membranes to remove aniline in aqueous solutions, Environ. Technol. 35 (9–12) (2014) 1175–1181. [9] A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: Adsorption modelling and process optimisation by central composite face-central design, Int. J. Environ. Anal. Chem. 103 (7) (2023) 1509–1529. [10] A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Integrated Fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: Multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions, Int. J. Environ. Anal. Chem. 102 (18) (2022) 7329–7344. [11] A. Azari, M. Malakoutian, K. Yaghmaeain, N. Jaafarzadeh, N. Shariatifar, G. Mohammadi, M.R. Masoudi, R. Sadeghi, S. Hamzeh, H. Kamani, Magnetic NH2-MIL-101(Al)/Chitosan nanocomposite as a novel adsorbent for the removal of azithromycin: Modeling and process optimization, Sci. Rep. 12 (1) (2022) 18990. [12] A. Azari, M. Abtahi, R. Saeedi, A.R. Yari, M.H. Vaziri, G. Mohammadi, Integrated ultrasound-assisted magnetic solid-phase extraction for efficient determination and pre-concentration of polycyclic aromatic hydrocarbons from high-consumption soft drinks and non-alcoholic beers in Iran, J. Sep. Sci. 45 (16) (2022) 3139–3149. [13] S.Y. Hashemi, M. Yegane Badi, H. Pasalari, A. Azari, H. Arfaeinia, A. Kiani, Degradation of Ceftriaxone from aquatic solution using a heterogeneous and reusable O3/UV/Fe3O4@TiO2 systems: Operational factors, kinetics and mineralisation, Int. J. Environ. Anal. Chem. 102 (18) (2022) 6904–6920. [14] H. Abdoallahzadeh, Y. Rashtbari, J.H.P. Américo-Pinheiro, A. Azari, S. Afshin, M. Fazlzadeh, Y. Poureshgh, Application of green and red local soils as a catalyst for catalytic ozonation of fulvic acid: Experimental parameters and kinetic, Biomass Convers. Biorefin. (2023) 1–10. [15] F. Rabiee, M. Sarkhosh, S. Azizi, A. Jahantigh, S.Y. Hashemi, M. Baziar, M. Gholami, A. Azari, The superior decomposition of 2, 4-Dinitrophenol under ultrasound-assisted Fe3O4@TiO2 magnetic nanocomposite: Process modeling and optimization, Effect of various oxidants and Degradation pathway studies, Int. J. Environ. Anal. Chem. (2022) 1–23. [16] M. Kermani, M. Dowlati, M. Gholami, H.R. Sobhi, A. Azari, A. Esrafili, M. Yeganeh, H.R. Ghaffari, A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in Vegetables, Chemosphere 270 (2021) 129382. [17] W.S. Chai, X.Y. Zhu, W. Liu, W.D. Zhang, Z.Y. Zhou, Z.Q. Ren, Extraction of aniline from wastewater: Equilibria, model, and fitting of apparent extraction equilibrium constants, RSC Adv. 6 (8) (2016) 6125–6132. [18] H. Chen, C.R. Sun, R.H. Liu, M.Z. Yuan, Z.H. Mao, Q. Wang, H.B. Zhou, H.N. Cheng, W.H. Zhan, Y.G. Wang, Enrichment and domestication of a microbial consortium for degrading aniline, J. Water Process. Eng. 42 (2021) 102108. [19] H.N. Cheng, M.Z. Yuan, Q. Zeng, H.B. Zhou, W.H. Zhan, H. Chen, Z.H. Mao, Y.G. Wang, Efficient reduction of reactive black 5 and Cr(Ⅵ) by a newly isolated bacterium of Ochrobactrum anthropi, J. Hazard. Mater. 406 (2021) 124641. [20] Q.Y. Liu, Y.X. Liu, X.J. Lu, Combined photo-Fenton and biological oxidation for the treatment of aniline wastewater, Procedia Environ. Sci. 12 (2012) 341–348. [21] Y. Chen, Y.J. Gao, T.T. Liu, Z. Zhang, W.S. Li, Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: A review, Water Sci. Technol. 86 (4) (2022) 690–713. [22] X.J. Cui, M.P. Zhang, Y.J. Ding, S.S. Sun, S.B. He, P. Yan, Enhanced nitrogen removal via iron-carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar? Sci. Total Environ. 815 (2022) 152800. [23] M.Y. Hu, T.L. Luo, Q.L. Li, Y.F. Xie, G. Liu, L.J. Wang, W.J.G.M. Peijnenburg, Remediation of low C/N wastewater by iron-carbon micro-electrolysis coupled with biological denitrification: Performance, mechanisms, and application, J. Water Process. Eng. 48 (2022) 102899. [24] Z.H. Sun, Z.H. Xu, Y.W. Zhou, D.F. Zhang, W.F. Chen, Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation, Environ. Sci. Pollut. Res. Int. 26 (26) (2019) 26869–26882. [25] Z.H. Xu, Y.Q. Gao, Z.H. Sun, D.F. Zhang, Y.W. Zhou, W.F. Chen, New insights into the reinforced reduction performance of Fe0/C internal electrolysis activated by persulfate for p-nitrophenol removal, Chemosphere 254 (2020) 126899. [26] Y.H. Han, M.M. Qi, L. Zhang, Y.M. Sang, M.L. Liu, T.T. Zhao, J.F. Niu, S.Q. Zhang, Degradation of nitrobenzene by synchronistic oxidation and reduction in an internal circulation microelectrolysis reactor, J. Hazard. Mater. 365 (2019) 448–456. [27] D.W. Ying, J. Peng, X.Y. Xu, K. Li, Y.L. Wang, J.P. Jia, Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron, J. Hazard. Mater. 229-230 (2012) 426–433. [28] Y.H. Han, H. Li, M.L. Liu, Y.M. Sang, C.Z. Liang, J.Q. Chen, Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Sep. Purif. Technol. 170 (2016) 241–247. [29] X.Y. Yang, Interior microelectrolysis oxidation of polyester wastewater and its treatment technology, J. Hazard. Mater. 169 (1–3) (2009) 480–485. [30] Y.T. Zhang, H.B. Lun, Research on micro-electrolysis method to treat the chrome-containing steel wastewater, Appl. Mech. Mater. 448-453 (2013) 620–624. [31] M. Räsänen, T. Eerikäinen, H. Ojamo, Characterization and hydrodynamics of a novel helix airlift reactor, Chem. Eng. Process. 108 (2016) 44–57. [32] K. Wadaugsorn, S. Limtrakul, T. Vatanatham, P.A. Ramachandran, Hydrodynamic behaviors and mixing characteristics in an internal loop airlift reactor based on CFD simulation, Chem. Eng. Res. Des. 113 (2016) 125–139. [33] Y.H. Han, L. Zhang, M.L. Liu, J.F. Niu, Numerical simulation of the hydrodynamic behavior and the synchronistic oxidation and reduction in an internal circulation micro-electrolysis reactor, Chem. Eng. J. 381 (2020) 122709. [34] L. Zhang, M.Y. Wu, Y.H. Han, M.L. Liu, J.F. Niu, Structural parameter optimization for novel internal-loop iron-carbon micro-electrolysis reactors using computational fluid dynamics, Chin. J. Chem. Eng. 27 (4) (2019) 737–744. [35] M. Yeganeh, A. Azari, H.R. Sobhi, M. Farzadkia, A. Esrafili, M. Gholami, A comprehensive systematic review and meta-analysis on the extraction of pesticide by various solid phase-based separation methods: A case study of malathion, Int. J. Environ. Anal. Chem. 103 (5) (2023) 1068–1085. [36] B. Lai, Y.X. Zhou, H.K. Qin, C.Y. Wu, C.C. Pang, Y. Lian, J.X. Xu, Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by microelectrolysis, Chem. Eng. J. 179 (2012) 1–7. [37] C. Zhang, M.H. Zhou, G.B. Ren, X.M. Yu, L. Ma, J. Yang, F.K. Yu, Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2, 4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway, Water Res. 70 (2015) 414–424. [38] W.W. Ma, Y.X. Han, C.Y. Xu, H.J. Han, W.C. Ma, H. Zhu, K. Li, D.X. Wang, Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition, Bioresour. Technol. 251 (2018) 303–310. [39] X.Y. Zhu, X.J. Chen, Z.M. Yang, Y. Liu, Z.Y. Zhou, Z.Q. Ren, Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis, Chem. Eng. J. 338 (2018) 46–54. [40] Q. Zhang, Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium, Environ. Technol. 36 (1–4) (2015) 515–520. [41] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76 (5) (2008) 965–977. [42] M.Z. Ahmad, S. Ehtisham-Ul-Haque, N. Nisar, K. Qureshi, A. Ghaffar, M. Abbas, J. Nisar, M. Iqbal, Detoxification of photo-catalytically treated 2-chlorophenol: Optimization through response surface methodology, Water Sci. Technol. 76 (2) (2017) 323–336. [43] K.J. Wan, G.Q. Wang, W.T. Bo, S.W. Xue, Z.Y. Miao, A sandwich structure of fulvic acid and PMIDA-modified LDHs for the simultaneous removal of Cu2+ and aniline in multicomponent solutions, Langmuir 39 (7) (2023) 2537–2547. [44] X.R. Wang, Y. Wang, Z. Shu, Y.W. Cao, X.M. Wang, F. Zhou, J.H. Huang, Phenolic hydroxyl-functionalized hyper-cross-linked polymers for efficient adsorptive removal of aniline, Sep. Purif. Technol. 305 (2023) 122443. [45] B.Y. Ma, W.J. Lv, J.Y. Li, C.W. Yang, Q. Tang, D. Wang, Promotion removal of aniline with electro-Fenton processes utilizing carbon nanotube 3D morphology modification of an Ag-loaded copper foam cathode, J. Water Process. Eng. 43 (2021) 102295. [46] Y. Li, J.Y. Zhu, J.Y. Hu, W. Li, Y.X. Li, D.Y. Zhang, Y.Q. Lan, Catalytic ozonation for effective degradation of aniline by sulfur-doped copper-nickel bimetallic oxide in aqueous solution, J. Environ. Chem. Eng. 9 (1) (2021) 104953. [47] S. Ahmadi, F. Mostafapour, E. Bazrafshan. Removal of Aniline and from Aqueous Solutions by Coagulation/Flocculation–Flotation[J]. Chemi. Sci. Int. J., 18(2017)1–10. [48] S. Ahmadi, F. Mostafapour, E. Bazrafshan, Removal of aniline and from aqueous solutions by coagulation/flocculation–flotation, Chem. Sci. Int. J. 18 (3) (2017) 1–10. [49] Y.H. Tu, L.F. Ren, J.H. Shao, Y.L. He, Simultaneous removal of aniline and antimony (Sb(V)) from textile wastewater using amidoxime-PAN/PLA nanofiber microsphere supported TiO2, Sep. Purif. Technol. 286 (2022) 120435. [50] J.P. Feng, Q. Zhang, B. Tan, M. Li, H.J. Peng, J. He, Y.J. Zhang, J.H. Su, Microbial community and metabolic characteristics evaluation in start-up stage of electro-enhanced SBR for aniline wastewater treatment, J. Water Process. Eng. 45 (2022) 102489. [51] H. Wang, L. Zhang, Y. Tian, Y. Jia, G.Z. Bo, L.T. Luo, L. Liu, G.Y. Shi, F.P. Li, Performance of nitrobenzene and its intermediate aniline removal by constructed wetlands coupled with the micro-electric field, Chemosphere 264 (Pt 1) (2021) 128456. [52] Y.H. Han, C.T. Wu, X.L. Fu, Z.M. Su, M.L. Liu, Sulfate removal mechanism by internal circulation iron-carbon micro-electrolysis, Sep. Purif. Technol. 279 (2021) 119762. [53] W.J. Sang, J.Q. Cui, Y.J. Feng, L.J. Mei, Q. Zhang, D. Li, W.J. Zhang, Degradation of aniline in aqueous solution by dielectric barrier discharge plasma: Mechanism and degradation pathways, Chemosphere 223 (2019) 416–424. |
[1] | Ali Nikkhah, Hasan Nikkhah, Hadis langari, Alireza Nouri, Abdul Wahab Mohammad, Ang Wei Lun, Ng law Yong, Rosiah Rohani, Ebrahim Mahmoudi. MXene: From synthesis to environment remediation [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 260-280. |
[2] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[3] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 118-130. |
[4] | Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 194-204. |
[5] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 341-354. |
[6] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[7] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[8] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[9] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[10] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[11] | Feng Jiang, Xiao Li, Guopeng Qi, Xiulun Li. Effects of particle type on the particle fluidization and distribution in a liquid–solid circulating fluidized bed boiler [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 53-66. |
[12] | Abid Ali, Bilal Ul Amin, Wenwu Yu, Taijiang Gui, Weiwei Cong, Kai Zhang, Zheming Tong, Jiankun Hu, Xiaoli Zhan, Qinghua Zhang. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 80-88. |
[13] | Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 162-172. |
[14] | Aiqin Gao, Xiang Luo, Huanghuang Chen, Aiqin Hou, Hongjuan Zhang, Kongliang Xie. Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 264-271. |
[15] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||