[1] Z.X. Huang, C. Sednek, M.A. Urynowicz, H.G. Guo, Q.R. Wang, P. Fallgren, S. Jin, Y. Jin, U. Igwe, S.P. Li, Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage, Nat. Commun. 8 (1) (2017) 568. [2] I. Melts, M. Ivask, M. Geetha, K. Takeuchi, K. Heinsoo, Combining bioenergy and nature conservation: An example in wetlands, Renew. Sustain. Energy Rev. 111 (2019) 293-302. [3] Y. Han, W.S. Winston Ho, Design of amine-containing CO2-selective membrane process for carbon capture from flue gas, Ind. Eng. Chem. Res. 59 (12) (2020) 5340-5350. [4] P. Rzepka, A.B. Jasso-Salcedo, A. Janicevs, P. Vasiliev, N. Hedin, Upgrading of raw biogas into biomethane with structured nano-sized zeolite |NaK|-A adsorbents in a PVSA unit, Energy Procedia 158 (2019) 6715-6722. [5] K. Arrhenius, A. Fischer, O. Buker, Methods for sampling biogas and biomethane on adsorbent tubes after collection in gas bags, Appl. Sci. 9 (6) (2019) 1171. [6] D.E. Jaramillo, D.A. Reed, H.Z.H. Jiang, J. Oktawiec, M.W. Mara, A.C. Forse, D.J. Lussier, R.A. Murphy, M. Cunningham, V. Colombo, D.K. Shuh, J.A. Reimer, J.R. Long, Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites, Nat. Mater. 19 (5) (2020) 517-521. [7] K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship, Chem. Soc. Rev. 46 (11) (2017) 3402-3430. [8] Z.D. Dai, S. Fabio, N. Giuseppe Marino, C. Riccardo, L.Y. Deng, Field test of a pre-pilot scale hollow fiber facilitated transport membrane for CO2 capture, Int. J. Greenh. Gas Contr. 86 (2019) 191-200. [9] X. Ning, W.J. Koros, Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation, Carbon 66 (2014) 511-522. [10] A. Jomekian, B. Bazooyar, S.J. Poormohammadian, P. Darvishi, A modified non-equilibrium lattice fluid model based on corrected fractional free volume of polymers for gas solubility prediction, Korean J. Chem. Eng. 36 (12) (2019) 2047-2059. [11] J. Winarta, A. Meshram, F.F. Zhu, R.J. Li, H. Jafar, K. Parmar, J.C. Liu, B. Mu, Metal-organic framework-based mixed-matrix membranes for gas separation: An overview, J. Polym. Sci. 58 (18) (2020) 2518-2546. [12] N. Gilani, J.T. Daryan, A. Rashidi, M.R. Omidkhah, Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes, Appl. Surf. Sci. 258 (10) (2012) 4819-4825. [13] Z.S. Dou, J.F. Cai, Y.J. Cui, J.C. Yu, T.F. Xia, Y. Yang, G.D. Qian, Preparation and gas separation properties of metal-organic framework membranes, Z. Fur Anorg. Und Allg. Chem. 641 (5) (2015) 792-796. [14] S.M. Wang, Q.P. Guo, S.J. Liang, P. Li, X. Li, J.J. Luo, Ni3(HCOO)6]/poly(styrene-b-butadiene-b-styrene) mixed-matrix membranes for CH4/N2 gas separation, Chem. Eng. Technol. 41 (2) (2018) 353-366. [15] Q.M. Xue, Y.S. Liu, Mixed-amine modified SBA-15 as novel adsorbent of CO2 separation for biogas upgrading, Sep. Sci. Technol. 46 (4) (2011) 679-686. [16] N.S. Hassan, A.A. Jalil, M.B. Bahari, N.F. Khusnun, E.M.S. Sharaf Aldeen, R.S. Mim, M.L. Firmansyah, S. Rajendran, R.R. Mukti, R. Andika, H. Devianto, A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation, Chemosphere 314 (2023) 137709. [17] Y.H. Wang, H. Jin, Q. Ma, K. Mo, H.Z. Mao, A. Feldhoff, X.Z. Cao, Y.S. Li, F.S. Pan, Z.Y. Jiang, A MOF glass membrane for gas separation, Angew. Chem. Int. Ed. 59 (11) (2020) 4365-4369. [18] T. Wu, M.C. Diaz, Y.H. Zheng, R.F. Zhou, H.H. Funke, J.L. Falconer, R.D. Noble, Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes, J. Membr. Sci. 473 (2015) 201-209. [19] N.S. Hassan, A.A. Jalil, M.B. Bahari, N.F. Khusnun, E.M. Sharaf Aldeen, R.S. Mim, M.L. Firmansyah, S. Rajendran, R.R. Mukti, R. Andika, H. Devianto, A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation, Chemosphere 314 (2023) 137709. [20] Y. Huang, L. Wang, Z.N. Song, S.G. Li, M. Yu, Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seeds, Angew. Chem. Int. Ed. 54 (37) (2015) 10843-10847. [21] N. Jusoh, Y. Yeong, T. Chew, K.K. Lau, A. Shariff, Current development and challenges of mixed matrix membranes for CO2/CH4 separation, Sep. Purif. Rev. 45 (2016) 321-344. [22] S.M. Wang, Q.P. Guo, S.J. Liang, P. Li, J.J. Luo, Preparation of Ni-MOF-74/SBS mixed matrix membranes and its application of CH4/N2 separation, Sep. Purif. Technol. 199 (2018) 206-213. [23] K. Nakatsuka, T. Yoshii, Y. Kuwahara, K. Mori, H. Yamashita, Controlled pyrolysis of Ni-MOF-74 as a promising precursor for the creation of highly active Ni nanocatalysts in size-selective hydrogenation, Chem. Weinheim Der Bergstrasse Ger. 24 (4) (2018) 898-905. [24] S.Z. Xie, Q.J. Qin, H. Liu, L.J. Jin, X.L. Wei, J.X. Liu, X. Liu, Y.C. Yao, L.H. Dong, B. Li, MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for low-temperature NH3-SCR and in situ DRIFTS study reaction mechanism, ACS Appl. Mater. Interfaces 12 (43) (2020) 48476-48485. [25] K.Y. Zhang, W. Xiao, J.G. Liu, C.W. Yan, Advanced poly(vinyl alcohol) porous separator with overcharge protection function for lithium-ion batteries, J. Solid State Electrochem. 23 (10) (2019) 2853-2862. [26] T. Chakrabarty, A.K. Giri, S. Sarkar, Mixed-matrix gas separation membranes for sustainable future: A mini review, Polym. Advan. Technol. 33 (6) (2022) 1747-1761. [27] M.C. Liu, D.X. Song, X. Wang, C.Z. Sun, D.W. Jing, Asymmetric two-layer porous membrane for gas separation, J. Phys. Chem. Lett. 11 (15) (2020) 6359-6363. [28] J. Wortman, V.O. Igenegbai, R. Almallahi, A.H. Motagamwala, S. Linic, Optimizing hierarchical membrane/catalyst systems for oxidative coupling of methane using additive manufacturing, Nat. Mater. 22 (12) (2023) 1523-1530. [29] A. Alomair, Y. Alqaheem, S.M. Holmes, The use of a sucrose precursor to prepare a carbon membrane for the separation of hydrogen from methane, RSC Adv. 9 (19) (2019) 10437-10444. [30] S. Basu, A.L. Khan, A. Cano-Odena, C.Q. Liu, I.F.J. Vankelecom, Membrane-based technologies for biogas separations, Chem. Soc. Rev. 39 (2) (2010) 750-768. [31] I.M. Davletbaeva, I.M. Dzhabbarov, A.M. Gumerov, I.I. Zaripov, R.S. Davletbaev, A.A. Atlaskin, T.S. Sazanova, I.V. Vorotyntsev, Amphiphilic poly(dimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate cross-linked block copolymers in a membrane gas separation, Membranes 11 (2) (2021) 94-103. [32] S.J. Datta, A. Mayoral, N. Murthy Srivatsa Bettahalli, P.M. Bhatt, M. Karunakaran, I.D. Carja, D. Fan, P. Graziane M Mileo, R. Semino, G. Maurin, O. Terasaki, M. Eddaoudi, Rational design of mixed-matrix metal-organic framework membranes for molecular separations, Science 376 (6597) (2022) 1080-1087. [33] W.F. Zhu, X.Q. Li, Y.Y. Sun, R.L. Guo, S.Y. Ding, Introducing hydrophilic ultra-thin ZIF-L into mixed matrix membranes for CO2/CH4 separation, RSC Adv. 9 (40) (2019) 23390-23399. [34] L.D. Anbealagan, T.Y.S. Ng, T.L. Chew, Y.F. Yeong, S.C. Low, Y.T. Ong, C.D. Ho, Z.A. Jawad, Modified zeolite/polysulfone mixed matrix membrane for enhanced CO2/CH4 separation, Membranes 11 (8) (2021) 630. [35] S. Kim, E. Marand, J. Ida, V.V. Guliants, Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation, Chem. Mater. 18 (5) (2006) 1149-1155. [36] E.V. Perez, K. Balkus, J. Ferraris, I. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, J. Membr. Sci. 328 (2009) 165-173. [37] Z.G. Wang, D. Wang, S.X. Zhang, L. Hu, J. Jin, Interfacial design of mixed matrix membranes for improved gas separation performance, Adv. Mater. Deerfield Beach Fla 28 (17) (2016) 3399-3405. |